
Sri GCSR College:Rajam Page 1

SRI GCSR COLLEGE

Programming in JAVA

Prepared by

Department of Computer Science

Sri GCSR College

GMR Nagar: Rajam

Study Material

Sri GCSR College:Rajam Page 2

UNIT-1

Introduction to Java: Features of Java, The Java virtual Machine, Parts of Java Naming

Conventions and Data Types: Naming Conventions in Java, Data Types in Java, Literals

Operators in Java: Operators, Priority of Operators Control Statements in Java: if... else

Statement, do... while Statement, while Loop, for Loop, switch Statement, break Statement,

continue Statement, return Statement Input and Output: Accepting Input from the Keyboard,

Reading Input with Java.util.Scanner Class, Displaying Output with System.out.printf(),

Displaying Formatted Output with String.format() Arrays: Types of Arrays, Three Dimensional

Arrays (3D array), arrayname.length, Command Line Arguments

1. Explain about Java Environment.

Java environment includes a large number of development tools that are used for

hundreds of classes and methods. They are two categories. They are:

Java Development Kit (JDK):

It contains the development tools such as applet viewer, java, javac, etc.

Table of Java Development Tools

Tool Use

1. Applet viewer It enables us to run java applets.

2. Javac (java compiler) It translates java source code to bytecode.

3. Java (java interpreter) It interprets java bytecode.

4. Javadoc It creates HTML format documentation from java source code

files.

5. Javah It produces header files for use with native methods.

6. Javap (java

diassembler)

It enables us to convert bytecode files into a program.

7. Jdb (java debugger) It helps us to find errors in our programs.

Sri GCSR College:Rajam Page 3

Flowchart for the usage of java tools in application development

2. Explain about Java Standard Library (JSL) or Application Programming Interface (API)

It contains the classes and methods such as language support package, utilities package,

etc. It is also known as Application Programming Interface (API). Most commonly used

packages are:

a) Language Support Package: It is a collection of classes and methods required for

implementing basic features of java.

java.lang.*;

b) Utilities Package: It is a collection of classes that contains utility functions such as date

and time functions.

java.util.*;

c) Input / Output Package: It is a collection of classes required for input/output

manipulations.

java.io.*;

d) Networking Package: It is a collection of classes for communicating with other

computers through internet.

java.net.*;

e) AWT Package: The Abstract Window Tool Kit package contains classes that

implements graphical user interface.

java.awt.*;

 Text Editor

 Java Source

Code

 javac

 Java

Class File

 java

 output

 javadoc HTML Files

 javah Header files

 jdb

Sri GCSR College:Rajam Page 4

f) Applet Package: It is a collection of classes that allows us to create java applets.

 java.applet.*;

Java Runtime Environment (JRE):

 It facilitates the execution of programs development in java. It contains the following:

3. Explain about Java Virtual Machine (JVM):

JVM is a engine that provides runtime environment to drive the Java Code or

applications. It converts Java bytecode into machines language. JVM is a part of JRE(Java Run

Environment). It stands for Java Virtual Machine

 In other programming languages, the compiler produces machine code for a particular

system. However, Java compiler produces code for a Virtual Machine known as Java

Virtual Machine.

 First, Java code is complied into bytecode. This bytecode gets interpreted on different

machines

 Between host system and Java source, Bytecode is an intermediary language.

 JVM is responsible for allocating memory space.

Software Code Compilation & Execution process

In order to write and execute a software program, you need the following

a) Editor – To type your program into, a notepad could be used for this

b) Compiler – To convert your high language program into native machine code

c) Linker – To combine different program files reference in your main program

together.

d) Loader – To load the files from your secondary storage device like Hard Disk, Flash

Drive, CD into RAM for execution. The loading is automatically done when you

execute your code.

e) Execution – Actual execution of the code which is handled by your OS & processor.

With this background, refer the following video & learn the working and architecture of

the Java Virtual Machine.

Java program Java compiler Java Virtual Machine

Byte code Java Interpreter Machine code

Source code Byte code

Virtual machine Real machine

Sri GCSR College:Rajam Page 5

4. Explain the features of JAVA.

 Java is an object-oriented, cross platform, multi-purpose programming language

developed by James Gosling, Patrick Naughton and their team members at Sun Microsystems

(Sun) in 1991. It was originally called as OAK by James Gosling later renamed to ‘Java’. It was

specially designed to develop software for consumer electronic devices like mobiles, TVs,

VCRs, micro wave ovens and other electronic machines.. The first publicly available version of

Java (Java 1.0) was released in 1995. It has earned a prominent place in the world of computer

programming. Sun Microsystems was acquired by the Oracle Corporation in 2010. Oracle has

now the steermanship for Java.

The target of Java is to write a program once and then run this program on multiple operating

systems.

Java features:

 The primary objective of Java programming language creation was to make it portable,

simple and secure programming language. Apart from this, there are also some excellent features

which play an important role in the popularity of this language. The features of Java are also

known as java buzzwords.

A list of most important features of Java language is given below.

1. Simple

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Interpreted

9. High Performance

10. Multithreaded

11. Distributed

12. Dynamic

i. Simple:

Java is very easy to learn, and its syntax is simple, clean and easy to understand.

According to Sun, Java language is a simple programming language because:

 Java syntax is based on existing programming languages.

 Java has removed many complicated and rarely-used features,

https://www.javatpoint.com/java-tutorial

Sri GCSR College:Rajam Page 6

 For example:- C language pointers, C++ operator overloading, etc.

 There is no need to remove unreferenced objects because there is an Automatic

Garbage Collection in Java.

ii. Object-oriented:

Java is an object-oriented programming language. Everything in Java is an object.

Object-oriented means we organize our software as a combination of different types of

objects that incorporates both data and behavior.

Object-oriented programming (OOPs) is a methodology that simplifies software

development and maintenance by providing some rules.

Basic concepts of OOPs are: Object, Class, Inheritance, Polymorphism,

Abstraction, Encapsulation

iii. Portable:

Java is portable because it facilitates you to carry the Java bytecode to any platform. It

doesn't require any implementation.

iv. Platform independent:

A platform is the hardware or software environment in which a program runs. Java

is platform independent because it is different from other languages like C, C++, etc.

which are compiled into platform specific machines while Java is a write once, run

anywhere language.

There are two types of platforms software-based and hardware-based. Java

provides a software-based platform.

Java code can be run on multiple platforms, for example, Windows, Linux, Sun

Solaris, Mac/OS, etc.

Java code is compiled by the compiler and converted into bytecode. This bytecode

is a platform-independent code because it can be run on multiple platforms, i.e., Write

Once and Run Anywhere(WORA).

v. Secured:

Java is best known for its security. With Java, we can develop virus-free systems.

Java is secured because:

 No explicit pointer

 Java Programs run inside a virtual machine sandbox

vi. Robust

Robust simply means strong. Java is robust because:

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

Sri GCSR College:Rajam Page 7

It uses strong memory management. There is a lack of pointers that avoids security

problems. There is automatic garbage collection in java which runs on the Java Virtual

Machine to get rid of objects which are not being used by a Java application anymore.

There are exception handling and the type checking mechanism in Java. Java makes an

effort to eliminate error-prone situations by emphasizing mainly on compile time error

checking and runtime checking. All these points make Java robust.

vii. Architecture-neutral

 Java is architecture neutral because there are no implementation dependent

features, for example, the size of primitive types is fixed.

 In C programming, int data type occupies 2 bytes of memory for 32-bit

architecture and 4 bytes of memory for 64-bit architecture. However, it occupies 4 bytes

of memory for both 32 and 64.

viii. High-performance

Java is faster than other traditional interpreted programming languages because

Java bytecode is "close" to native code. It is still a little bit slower than a compiled

language (e.g., C++). Java is an interpreted language that is why it is slower than compiled

languages, e.g., C, C++, etc.

ix. Distributed

 Java is distributed because it facilitates users to create distributed applications in

Java. RMI and EJB are used for creating distributed applications. This feature of Java

makes us able to access files by calling the methods from any machine on the internet.

x. Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java

programs that deal with many tasks at once by defining multiple threads. With Java's

multithreaded feature it is possible to write programs that can perform many tasks

simultaneously. The main advantage of multi-threading is that it doesn't occupy memory

for each thread. It shares a common memory area. Threads are important for multi-media,

Web applications, etc.

xi. Dynamic

Java is a dynamic language. It supports dynamic loading of classes. It means

classes are loaded on demand. It also supports functions from its native languages, i.e., C

and C++. Java supports dynamic compilation and automatic memory management

(garbage collection).

Sri GCSR College:Rajam Page 8

5. Explain the structure of Simple java program.

 Documentation section: The documentation section comprises a set of comment lines

giving the name of the program, the author and other details, which the programmer

would like to refer to at a later stage.

Example: // Addition of two numbers

 Package statement: The first statement allowed in a java file is a package statement.

This statement declares a package name and informs the compiler that the classes defined

here belong to this package. The package statement is optional.

Example: package arithmetic;

 Import statement: This statement instructs the interpreter to load the Addition class

contained in the package arithmetic. Using import statements, we can have access to

classes that are part of other named packages.

 import arithmetic. Addition;

 Interface statement: An interface is like a class but includes a group of method

declarations. This is also an optional section and is used only when we wish to implement

the multiple inheritance features in the program.

 interface interface_name;

 Class definition: A Java program may contain multiple class definitions. Classes are the

primary and essential elements of a Java program. The number of classes used depends

on the complexity of the problem.

class class_name

Sri GCSR College:Rajam Page 9

{

 Data members;

 methods

}

 Main method class: Since every Java stand-alone program requires a main method as its

starting point, this class is the essential part of a Java program. The main method creates

objects of various classes and establishes communications between them.

class Sample

{

 public static void main (String args[])

 {

 } }

6. Explain the Difference between Java and C Language.

C JAVA

C is a Procedural Programming Language. Java is Object-Oriented language.

C is a middle-level language because binding

of the gaps takes place between machine

level language and high-level languages

Java is a high-level language because

translation of code takes place into machine

language using compiler or interpreter.

C is a compiled language that is it converts

the code into machine language so that it

could be understood by the machine or

system.

Java is an Interpreted language that is in Java,

the code is first transformed into bytecode and

that bytecode is then executed by the JVM

(Java Virtual Machine).

C generally breaks down to functions. Java breaks down to Objects.

Memory allocation can be done by malloc in

C

Memory allocation can be done by a new

keyword in Java.

free is used for freeing the memory in C. A compiler will free up the memory internally

by calling the garbage collector.

C supports pointers. Java does not supports pointers.

C supports storage classes Whereas JAVA does not supports storage

classes

It has 32 keywords.

It has 50 keywords.

Sri GCSR College:Rajam Page 10

7. Explain the Difference between Java and C++ Language.

C++ JAVA

C++ was Influenced by Influenced by Ada,

ALGOL 68, C, ML, Simula, Smalltalk, etc.

languages.

Java was Influenced by Ada 83, Pascal,

C++, C#, etc. languages.

Platform dependent, should be compiled for

different platforms.

Platform independent, Java bytecode works

on any operating system.

C++ is a Compiled Language. Java is both Compiled and Interpreted

Language.

Memory management in C++ is manual Memory management is system controlled

It supports both single and multiple

inheritance

It supports only single inheritance. multiple

inheritances are achieved using interfaces

It supports both method and operator

overloading.

It supports only method overloading and

doesn’t allow operator overloading.

It strongly supports pointers It has limited supports of pointers

It supports direct system library calls,

making it suitable for system-level

programming.

It doesn’t support direct native library calls

but only Java Native Interfaces.

C++ is both a procedural and an object-

oriented programming language.

Java is only an object-oriented programming

language.

8. Explain Naming Conventions in Java

In java, it is good practice to name class, variables, and methods name as what they are

actually supposed to do instead of naming them randomly.

 Class names should be nouns, in mixed cases with the first letter of each internal word

capitalized. Interfaces names should also be capitalized just like class names.

 Use whole words and must avoid acronyms and abbreviations.

 class Student { }

 class S=Integer {}

 class Scanner {}

 Methods should be verbs, in mixed case with the first letter lowercase and with the first

letter of each internal word capitalized.

 public static void main(String [] args) {}

https://www.geeksforgeeks.org/csharp-programming-language/

Sri GCSR College:Rajam Page 11

Variable names should be short yet meaningful.

Variable names should not start with underscore _ or dollar sign $ characters, even though both

are allowed.

 Should be mnemonic i.e, designed to indicate to the casual observer the intent of its use.

 One-character variable names should be avoided except for temporary variables.

 Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for

characters.

 int[] marks;

 double double answer,

 Should be all uppercase with words separated by underscores (“_”).

 There are various constants used in predefined classes like Float, Long, String etc.

 num = PI;

 The prefix of a unique package name is always written in all-lowercase ASCII letters and

should be one of the top-level domain names, like com, edu, gov, mil, net, org.

 Subsequent components of the package name vary according to an organization’s own

internal naming conventions.

 java.util.Scanner ;

 java.io.*;

9. Explain Constants and variables in JAVA:

Constants:

 Constants in Java refer to fixed values that do not change during the execution of a

program.

Integer constant:

An integer constant refers to a sequence of digits.

 There are three types of integer namely decimal integer, octal integer and hexadecimal

integer.

A. Decimal integers consist of digits 0 through 9, preceded by an optional minus sign.

Spaces, commas and non-digit characters are not permitted between digits.

Example: 127, -131, 65534 etc.,

B. An octal integer constant consists of digits from the 0 through 7, with leading O.

Example: O37, O435, o346 etc.

Sri GCSR College:Rajam Page 12

C. A sequence of digits preceded by Ox or OX is considered as hexa-decimal integer. They

may also include alphabets A through F or a through f. A letter A through F represents

the numbers 10 through 15.

Example: OX2, OX9F, OXbcd etc.,

Real Constants:

 Numbers containing fractional parts like 17.548. Such numbers are called real constants.

A real number may also be expressed in exponential notation. The general form is

mantissa E exponent

Mantissa is either a real number or an integer. The exponent is an integer with an optional

+ or – sign. The mantissa and the exponent can be written in either lower case or

uppercase. Example: 215.65 may be written as 2.1565e2.

 e2 means multiple by 102.

Single character constant:

A single character constant contains a single character enclosed within a pair of single

quote marks.

Examples: ‘5’ ‘x’ ‘;’ ‘ ’

 Note that the character constant ‘5’ is not the same as the number 5.

String character constant:

A string constant is a sequence of characters enclosed between double quotes. The

character may be alphabets, digits; special characters and blank spaces.

 Example: “2009” “Programming with Java” “3+6=9” “X”

Backslash character constant:

Java supports some special backslash character constants that are used in output methods.

For example the symbol ‘\n’ stands for new line character.

List of backslash character constants

Variable:

 A variable is a data name that may be used to store a

data value. A variable may take different values at different

times during execution. A variable name can be chosen by

the programmer in a meaningful way so as to reflect what it

represents in the program.

a. Rules for a variable:

b. They must begin with a letter.

c. The upper and lowercase are distinct.

Constant Meaning

‘\b’ Back space

‘\f’ Form feed

‘\n’ New line

‘\r’ Carriage return

‘\t’ Horizontal tab

‘\” Single quote

‘\”’ Double quote

‘\\’ backslash

Sri GCSR College:Rajam Page 13

d. It should not be a keyword.

e. White spaces are not allowed.

f. Variable names can be of any length.

Declaration of variables:

 In Java, variables are the name of storage locations. After designing suitable variable

names, we must declare them to the compiler.

 It tells the name of the variable.

 It specifies the type of data.

 The place of declaration decides the scope of the variable.

Syntax: type variable_1, variable_2, variable_n;

Example: int a,b;

Assigning values to variables:

 A variable must be given value after it has been declared but before it is used in an

expression.

 Syntax: variable name=value; Example: x=0;

 It is also possible to assign a value to a variable at the time of its declaration.

 Syntax: type variable name=value; Example: int y=2;

The process of giving initial values to variable is known as the initialization. If the

variable is not initialized, it is automatically set to zero.

Scope of variables: The area of the program where the variable is accessible is called its scope.

Instance variables: Instance and class variable are declared inside a class. Instance

variables are created, when the objects are instantiated and therefore they are associated with the

objects. They take different values for each object.

Class variables: Class variable are global to a class and belong to the entire set of objects

that class creates. Only one memory location is created for each class variable.

Local variables: Variables declared and used inside methods are called local variable.

They are not available for the outside the method definition. Local variables can also be declared

inside program blocks that are defined between an opening brace and a closing brace.

10. Explain different data types supported by JAVA:

Data type is the representation of the kind of data that we use in the program. Every

variable in Java has a data type. Data types specify the size and type of values that can be stored.

Java language is rich in its data types.

Sri GCSR College:Rajam Page 14

A. Integer types: Integer types can hold whole numbers

along with the negative numbers. The size of the

values that can be stored depends on the integer data

type. Java supports four types of integers. They are

byte, short, int and long. Java doest not support the

concept of unsigned types.

Type Size
Default

value
Minimum Value Maximum Value

byte 1 byte 0 -128(-27) 127(27-1)

short 2 bytes 0 -32,768(-215) 32,767(215-1)

int 4 bytes 0 -2,147,483,648(-231) 2,147,483,647(231-1)

long 8 bytes 0L
-9,232,372,036,854,775,808(-

263)

-9,232,372,036,854,775,807(263-

1)

B. Floating Point Types: Floating point type can hold numbers containing fractional part such

as 22.365 and -89.365. There are two kinds of floating point storage in java.

 Floating point numbers are treated as double precision quantities. To force them to be

in single precision mode, we must append f or F to the number.

 Double-precision types are used when we need greater precision in storage of floating

point number.

C. Character type: In order to store character constant in memory, java provides a character

data type called char. The char type assumes a size of 2 bytes but basically it can hold only a

single character.

D. Boolean type: Boolean type is used when we want to test a particular condition during the

execution of the program. There are only two values that a Boolean type can take true or

false. Boolean type is denoted by the keyword Boolean and uses only one bit of storage.

11. Explain about Java Tokens.

 The smallest individual units in a program are known as tokens. Java program is a

collection of tokens, comments and white spaces. Java language includes five types of tokens.

Type Size Default value Minimum Value Maximum Value

float 4 bytes 0.0f 3.4e-038 3.4e+038

double 8 bytes 0.0d 1.7e-308 1.7e+308

Sri GCSR College:Rajam Page 15

1. Keywords

2. Identifiers

3. Literals (Constants)

4. Operators

5. Separators

1. Keywords: Keywords are the reserved or pre-defined words. Java language has 60 keywords.

Since keywords have specific meaning in Java, we cannot use them as names for variables,

classes, methods and so on. All keywords are to be written in lower-case letters. Since Java is

case-sensitive.

The following table lists the java keyword

abstract Continue for New switch

assert*** Default goto* Package synchronized

boolean Do if Private this

break Double implements protected throw

byte Else import Public throws

case enum**** instanceof Return transient

catch Extends int Short try

char Final interface Static void

class Finally long strictfp** volatile

const* Float native Super while

2. Identifiers: Identifiers refer to the names of classes, methods, variables, arrays, objects,

labels, packages and interfaces in a program. These are user- defined names and consist of a

sequence of letters and digits with a letter as a first character.

Rules for identifiers:

 They can have alphabets, digits, underscore and dollar sign.

 They must begin with a letter.

 The upper and lowercase are distinct.

 The variable name should not be a keyword.

 White spaces are not allowed.

 They can be of any length.

 Identifiers cannot match any of Java's reserved words.

Examples: These identifiers are valid:

Sri GCSR College:Rajam Page 16

 MyClass

 $amount

 totalGrades;

 TotalGrades;…..etc

3. Literals (Constants): Literals in Java are a sequence of characters that represent fixed values

that do not change during the execution of a program.Example of literals:

 Integer literals: 33 0 -9

 Floating-point literals: 3 0.3 3.14

 Character literals: '(' 'R' 'r' '{'

 Boolean literals: (predefined values)true false

 String literals: "language" "0.2" "r" ""

4. Operators: An operator is a symbol that takes one or more arguments and performs certain

mathematical or logical manipulations.

Types of Operators:

1. Arithmetic operator

2. Relational operator

3. Logical operator

4. Increment and decrement operator

5. Bit wise operator

6. Assignment operator

7. Conditional operator

8. Special operator

5. Separators:

 Separators are symbols used to indicate where groups of code are divided and arranged.

They basically define the shape and function of our code.

 Parentheses () Used to enclose parameters in method definition

 braces { } Used to contain the values of automatically initialized arrays

 brackets [] Used to declare array types and for dereferencing array values.

 semicolon : Used to separate statements

 comma , Used to separate consecutive identifies in a variable declaration.

 Period . Used to separate package names from sub-packages and classes

 also used to separate a variable or method from a reference variable

Sri GCSR College:Rajam Page 17

12. Explain different operators supported by JAVA

Operators are special symbols that perform specific operations on one, two, or three

operands, and then return a result.

Operands Operands are the values on which the operators act upon. An operand can be a

value or a variable

Types of Operators:

The operators can be classified into three types based on the Number of operands

1. Unary if it acts on a single operand (Eg : ++, --)

2. Binary if it requires two operands. (Eg: +, *)

3. Ternary if it requires three operands. The conditional operator is the only

ternary operator in Java.

The operators can be classified into the following categories based on the operations

they perform

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Bitwise Operators

5. Assignment Operators

6. Conditional Operators

7. Special Operators

Arithmetic Operators:-

Java's arithmetic operators are used for performing basic arithmetic operations on

numerals and characters. The following table lists arithmetic operators

Operator Name Example Resul

t

Description

a + b Addition 3 + 5 8 Adds the two operands(Can also be used for

String Concatenation)

a – b Subtraction 3 - 5 -2 Subtracts the second operand from the first

Operand.

a * b Multiplication 3 * 5 15 Multiplie both the operands.

a / b Division 15 /3 5 Divides the first operand by the second.

a % b Modulo

Division

3 % 2 1 Returns the remainder after dividing the first

number by the second

Sri GCSR College:Rajam Page 18

Arithmetic expressions:

 An arithmetic expression is a combination of variables, constants and arithmetical

operators arranged as per the syntax of the language.

 Example: (m+n) * (x+y)

There are three types of arithmetic expressions. They are:

1. Integer Arithmetic Expression: It is an expression in which all the operands are

integers and the result is also an integer.

 Ex: a=5; b= 6;

 a + b = 11

2. Real Arithmetic Expression: It is an expression in which all the operands are real and

the result is real.

 Ex: a=2.5; b= 3.5;

 a + b = 6.0

3. Mixed Mode Arithmetic Expression: It is an expression in which all the operands are

both integers and real and the result is real.

 Ex: a=2.5; b= 6;

 a + b = 8.5

Relational Operators:

 Relational Operators are used for comparing numerals and the characters. The result of

applying relational operators is either true or false.

 The following table lists the relational operators

Operator Name Example Result Description

a > b Greater than 3 > 5 False Returns true if the first operand is greater

than the second operand

a < b Lesser than 5 < 5 False Returns true if the first operand is lesser

than the second operand

a >= b Greater than or

equal

3 >= 5 False Returns true if the first operand is greater

than or equal to the second operand.

a <= b Lesser than or equal

to

15 <= 15 True Returns true if the first operand is lesser

than or equal to the second operand.

a == b Equal To 3 == 2 False Returns true if the first operand is equal

to the second operand.

a != b Not equal to 3 != 2 True Returns true if the first operand is not

equal to the second operand.

Sri GCSR College:Rajam Page 19

Logical Operators

 Relational operators enable you to compare two variables to determine whether they are

equal or if one is greater than the other, and so on. But when you want to check to see if a

variable is in between a range of values or to check multiple conditions we use logical operators.

The following table lists the logical operators

Operator Name Example Result Description

a && b Logical AND (3>5) && (2>5) True Returns true if the both operands is

true.

a || b Logical OR (3>5) &&

(10>5)

True Returns true if any of the operands

is true

! a NOT ! (3>= 5) True Complements the result of the

expression

Bitwise Operators

Java's bitwise operators operate on individual bits of integer (int and long) values. If an

operand is shorter than an int, it is promoted to int before doing the operations.

 It helps to know how integers are represented in binary. For example the decimal number

3 is represented as 11 in binary and the decimal number 5 is represented as 101 in binary.

Negative integers are store in two's complement form.

For example, -4 is 1111 1111 1111 1111 1111 1111 1111 1100.

The following table lists bitwise operators

Operator Name Example Result Description

a& b And 3 & 5 1 1 if both bits are 1.

a|b Or 3 | 5 7 1 if either bit is 1.

a ^ b Xor 3 ^ 5 6 1 if both bits are different.

~a Not ~3 -4 Inverts the bits.

n<<p left

shift

3 <<< 2 12 Shifts the bits of n left p positions. Zero bits are shifted

into the low-order positions.

n>>p Right

shift

5 >> 2 1 Shifts the bits of n right p positions. If n is a 2's

complement signed number, the sign bit is shifted into

the high-order positions.

n>>>p Right

shift

-4 >>> 28 15 Shifts the bits of n right p positions. Zeros are shifted

into the high-order positions.

Sri GCSR College:Rajam Page 20

Increment and Decrement Operators:

 The ++ and the – are java’s increment and decrement operators. The increment operator

increases its operand by one. The decrement operator decreases its operand by one.

 For example, this statement: x = x + 1 can be rewritten like this by use for the increment

operator x++; Similarly, this statement x = x –1 is equivalent to x--;

 Increment and decrement operators can be applied to all integers and floating point types.

These operators are unique in that they can appear both in postfix form (x--, x++) and prefix

form (--x, ++x), where they precede the operand.

 In postfix form, the previous value is obtained for use in the expression, and then the

operand is modified. For example:

 x = 42;

 y = ++x;

 In this case, y is set to 43 as you would expect, because the increment occurs before x is

assigned to y. thus, the line y=++x; is the equivalent of these two statements:

 x = 42;

 y = x++;

 The value of x is obtained before the increment operator is executed, so the value of y is

42. Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two

statements:

 y =x;

 x = x + 1;

Example:

/* Demo increment and decrement operator */

class InDec

{

 public static void main (String args[])

 {

 int a = 1,b = 2,c,d;

 c = ++b;

 d = a++;

 c++;

 System.out.println(“a = “ + a);

 System.out.println(“b= “ + b);

 System.out.println(“c = “ + c);

 System.out.println(“d = “ + d);

 }

}

Sri GCSR College:Rajam Page 21

Assignment Operator:

 Assignment operator is the most common operator almost used with all programming

languages. It is represented by "=" symbol in Java which is used to assign a value to a variable

lying to the left side of the assignment operator. But, If the value already exists in that variable

then it will be overwritten by the assignment operator (=). This operator can also be used to

assign the references to the objects.

 Syntax: <variable> = <expression>;

Conditional Operator:

 Java supports another conditional operator that is known as the ternary

operator "?:"

 It is basically used as an short hand for simple if..else

 boolean expression ? operand1 : operand2;

 The "?:" operator evaluates an expression which may also be an operand and

returns operand1 if the expression is true; otherwise returns operand2, if the expression

is false. We can understand this thing with the help of a diagram shown as:

 Expression? True value: false value

Example:

public class condiop

{

 public static void main(String[] args)

{

 String out;

 int a = 6, b = 12;

 out = a==b ? "Yes":"No";

 System.out.println("Ans: "+out);

 }

}

Special Operators:

A. Dot operator: The dot operator (.) is used to access the instance variable and methods of

class objects.

x.rno, x.name, x.average()

It is also used to access classes and sub-packages from a package.

B. Instanceof Operator: Java provides a run-time operator instanceof to compare

a class and an instance of that class. The instanceof operator is defined to know about

an object's relationship with a class. It evaluates to true, if the object or array is

Sri GCSR College:Rajam Page 22

an instance of the specified type otherwise it returns false. The instanceof operator can

be used with the arrays and objects. It can't be used with primitive data types and values.

 Syntax : object instanceof type

Operator precedence and associativity:

The precedence is used to determine how expression involving more than one operator is

evaluated. The operator at the higher level of precedence is evaluated first. The operators of the

same precedence are evaluated either from left to right or from right to left, depending on the

level. This is known as the associatively property of an operator.

Operator Description Association Rank

.

()

[]

Member selection

Method call

Array element reference

Left to right 1

-

++

--

!

~

Unary minus

Increment

Decrement

Logical not

One’s complement

Right to left 2

*

/

%

Multiplication

Division

Modulo division

Left to right 3

+

-

Addition

Subtraction

Left to right 4

<<

>>

>>>

Left shift

Right shift

Right shift zero fill

Left to right 5

<

<=

>

>=

Less than

Less than or equals to

Greater than

Greater than or equals to

Left to right 6

==

!=

Equality

inequality

Left to right 7

& Bitwise and Left to right 8

Sri GCSR College:Rajam Page 23

^

|

&&

||

?:

=

Bitwise Xor

Bitwise or

Logical and

Logical or

Conditional operator

Assignment operator

9

10

11

12

13

14

13. Explain Control statements in JAVA:

A control structure determines the order in which statements are executed.

Decision Making and branching:

 Decision making in programming is similar to decision making in real life. In

programming also we face some situations where we want a certain block of code to be executed

when some condition is fulfilled.

 If branching is based on a particular decision then that is known as decision making

and branching.

 Decision making and branching statement are classified into two types. They are

A. Conditional Statements.

B. Unconditional Statements.

A. Conditional Statements:

 A programming language uses control statements to control the flow of execution of

program based on certain conditions. There are two types of Conditional Statement.

1. If statement

2. Switch statement

2. Decision making with if statement:

 It is basically a two-way decision statement.

 Syn: if(test_expression)

 statement;

 It allows the computer to evaluate the test_expression first and then, depending on

whether the value of the test_expression is true or false, it transfers the control to a particular

statement.

Types of if statement:

a. Simple if

b. if …else

Sri GCSR College:Rajam Page 24

c. Nested if …else

d. Else if ladder

a. Simple if statement:

The if statement evaluates the test expression inside the

parenthesis. If statement accepts Boolean values.

 If the test expression is evaluated to true (nonzero),

statement(s) inside the body of ifis executed.

 If the test expression is evaluated to false (0),

statement(s) inside the body of if is skipped from

execution.

Syn: if(test_expression)

 Statement;

Example: java program to demonstrate Simple if.

b. If_ else statement:

The if statement alone tells us that if a condition is true it will execute a block of

statements and if the condition is false it won’t. But what if we

want to do something else if the condition is false. Here comes the

else statement. We can use the else statement with if statement to

execute a block of code when the condition is false.

Syntax: if (condition)

{

 // Executes this block if condition is true

}

else

{

 // Executes this block if condition is false }

Example: java program to demonstrate if-else

c. Nested If_ else:

 It's possible to have if..else statements inside a if..else statement in Java. It's called nested if...else statement. When a series of decisions are involved, we may have to use more than one if else statement in nested form as follows.

Syn: if(test_expression1)

Sri GCSR College:Rajam Page 25

{

if(test_expression2)

{

if(test_expression3)

 true statement;

else

 false statement;

}

else

 false statement;

}

else

 false statement;

statement x;

If the test expression is false, then statement_3 will be executed; otherwise it continues

to perform the second test. If the test_condition2 is true, then statement-1 will be executed,

otherwise statement-2 will be executed and then the control is transferred to the statement-x

Example: java program to demonstrate nested if-else

d. The else_if ladder:

 There is another way of putting ifs together when multi-path decision are involved, A

multi-path decision is a chain of ifs in which the statement associated with each else is an if. The

general form is

 Syn: if(test_expression1)

 statement1;

 else if(test_expression2)

 statement 2;

 …………………………..

 …………………………..

 else

 default statement;

Sri GCSR College:Rajam Page 26

Whenever the condition is true, the associated statement will be executed and the

remaining conditions will be bypassed. If none of the conditions are true then the else block

default statements will execute.

Example: java program to demonstrate else-if-else ladder

Switch statement:

 The switch statement is a multi way decision statement. It tests the value from a given list

of statements. The general form of the switch statement is as

Syn:

switch(variable)

{

case 1: //execute your code

break;

case 2: //execute your code

break;

.........................

case n: //execute your code

break;

default: //execute your code

}

After the end of each block it is necessary to insert a break statement because if the

programmers do not use the break statement, all consecutive blocks of codes will get executed

from each case onwards after matching the case block. If none of the case is true then the default

statements will execute.

Example: java program to demonstrate switch case.

Decision Making and Looping

Loop statement:

 Loop is a statement, which executes a sequence of statements several times until a condition is

satisfied is called iteration. Iteration statements execute the same set of instructions until a

termination condition is met. It consists of two segments, one known as the body of the loop and

the other known as the control statement. The control statement tests certain conditions and

executes the body of the loop.

Sri GCSR College:Rajam Page 27

Depending on the position of the control statement in the loop, the control structure may

be classified either as entry controlled loop or as the exit controlled loop.

In the entry controlled loop, control conditions are tested before the start of the loop

execution. If the conditions are not satisfied, then the body of the loop will not be executed.

Example: For loop and While loop.

In the exit-controlled loop, the test is performed at the end of the body of the loop and

therefore the body is executed unconditionally for the first time.

Example: do while loop

A loop generally includes the following four steps:

1. Initialization.

2. Test_expression.

3. Body of the loop.

4. Increment or decrement

1. For loop: The for loop is entry-controlled loop that provides a

short loop control structure. It is used when the final condition is

known.

A for loop executes a statement (that is usually a block) as

long as the boolean condition evaluates to true. A for loop is a

combination of the three elements initialization statement, boolean

expression and increment or decrement statement.

The general form is:

Syntax:

 for(<initialization>;<condition>;<increment or decrement

statement>)

{

<block of code>

}

The initialization block executes first before the loop starts.

It is used to initialize the loop variable. The condition statement

evaluates every time prior to when the statement (that is usually

be a block) executes, if the condition is true then only the

statement (that is usually a block) will execute. The increment or

decrement statement executes every time after the statement (that

is usually a block).

Sri GCSR College:Rajam Page 28

Example: java program to demonstrate For loop.

2. The while loop: The while loop is an entry controlled loop statement. The test-condition is

tested and if the condition is true, then the body of the loop is executed. It can be also used

when we don’t know the final value.

Syn: initialization;

 while(test condition)

 {

 body of the loop;

 increment/ decrement;

 }

Example: java program to demonstrate while loop.

3. do_while loop: The do while loop is an exit controlled loop

statement. It executes all the statements with out testing the

condition for the first time. From the second time onwards it

executes all the statements after testing the condition as test

condition will be placed at the end of the loop.

Syn: initialization;

do

{

statement(s);

increment/ decrement;

}while(condition);

Example: java program to demonstrate do-while loop.

14. Explain about Un Conditional Statements (Jumping Statements) in JAVA:

In Java jump statements are mainly used to transfer control to another part of our

program depending on the conditions. These statements are very useful from the programmer's

view because these statements allow alteration of the flow of execution of the program. These

statements can be used to jump directly to other statements, skip a specific statement and so on.

In Java we have the following three jump statements:

1. break (simple and labeled)

2. continue

3. return

Sri GCSR College:Rajam Page 29

The break statement:

If we want to go out of a loop then we use a break statement. If we use a break statement

in a loop then execution will continue with the immediate next statement outside the loop. After

a break, all the remaining statements in the loop are skipped. The break statement can be used in

a while loop, for loop, do-while loop, and in a switch case.

Syntax : if(condition)

 {

 Statements;

 break;

 }

Example: java program to demonstrate break statement.

The continue statement:

The continue keyword is used mainly with loops. When we do not want to execute some

statements then we use a continue statement to skip those statements to execute. If the continue

statement is confronted in the program then it will start the next iteration. It does not terminate

the loop, it just skips some part of the loop. The execution again starts from the top of the loop.

In some ways it is similar to the break statement.

Syntax : if(condition)

 { continue; }

 Example: java program to demonstrate contiue statement.

 The return statement:

The return statement is the last jump statement. The return statement is used to end the

execution of a specific method and then return a value. When we use a return statement in our

program then it sends the program control to the method caller. The data type of the returned

value should always be equal to the data type of the method's declared return value.

Syntax : if(condition)

 {

 return;

}

Example: java program to demonstrate return statement.

15. Explain different INPUT and OUTPUT statements in JAVA.

In Java, there are four different ways for reading input from the user in the command line

environment (console).

1.Using Buffered Reader Class

Sri GCSR College:Rajam Page 30

This is the Java classical method to take input, Introduced in JDK1.0. This method is

used by wrapping the System.in (standard input stream) in an InputStreamReader which is

wrapped in a BufferedReader, we can read input from the user in the command line.

 The input is buffered for efficient reading.

 The wrapping code is hard to remember.

// Java program to demonstrate BufferedReader

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class Test {

 public static void main(String[] args) throws IOException

 {

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

 String name = reader.readLine();

 System.out.println(name);

 }

}

 Note: To read other types, we use functions like Integer.parseInt(), Double.parseDouble(). To

read multiple values, we use split().

 2. Using Scanner Class

 This is probably the most preferred method to take input. The main purpose of the

Scanner class is to parse primitive types and strings using regular expressions, however, it is

also can be used to read input from the user in the command line.

 Convenient methods for parsing primitives (nextInt(), nextFloat(), …) from the tokenized

input.

 Regular expressions can be used to find tokens.

 The reading methods are not synchronized

// Java program to demonstrate working of Scanner in Java

import java.util.Scanner;

class GetInputFromUser {

 public static void main(String args[])

Sri GCSR College:Rajam Page 31

 {

 Scanner in = new Scanner(System.in);

 String s = in.nextLine();

 System.out.println("You entered string " + s);

 int a = in.nextInt();

 System.out.println("You entered integer " + a);

 float b = in.nextFloat();

 System.out.println("You entered float " + b);

 }

}

3. Using Console Class

 It has been becoming a preferred way for reading user’s input from the command line.

In addition, it can be used for reading password-like input without echoing the characters

entered by the user; the format string syntax can also be used (like System.out.printf()).

 Advantages:

 Reading password without echoing the entered characters.

 Reading methods are synchronized.

 Format string syntax can be used.

 Does not work in non-interactive environment (such as in an IDE).

 // Java program to demonstrate working of System.console()

// Note that this program does not work on IDEs as

// System.console() may require console

public class Sample {

 public static void main(String[] args)

 {

 String name = System.console().readLine();

 System.out.println("You entered string " + name);

 }

}

4. Using Command line argument

 Most used user input for competitive coding. The command-line arguments are stored

in the String format. The parseInt method of the Integer class converts string argument into

https://www.geeksforgeeks.org/command-line-arguments-in-java/

Sri GCSR College:Rajam Page 32

Integer. Similarly, for float and others during execution. The usage of args[] comes into

existence in this input form. The passing of information takes place during the program run.

The command line is given to args[]. These programs have to be run on cmd.

 // Program to check for command line arguments

class Hello {

 public static void main(String[] args)

 {

 if (args.length > 0) {

 System.out.println("The command line arguments are:");

 for (String val : args)

 System.out.println(val);

 }

 else

 System.out.println("No command line " + "arguments found.");

 }

}

 Output statement in Java:-

Java brings various Streams with its I/O package that helps the user to perform all

the input-output operations. These streams support all the types of objects, data-types,

characters, files etc to fully execute the I/O operations.

Java has to provide default streams which are

also most common in use:

1. System.in: This is the standard input

stream that is used to read characters from

the keyboard or any other standard input

device.

2. System.out: This is the standard output

https://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/java-lang-system-class-java/
https://www.geeksforgeeks.org/java-lang-system-class-java/
https://media.geeksforgeeks.org/wp-content/uploads/20191126125125/Java-Input-Output-Stream.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20191127113736/Java-Basic-input-output1.png

Sri GCSR College:Rajam Page 33

stream that is used to produce the result of a program on an output device like the computer

screen.

Here is a list of the various print functions that we use to output statements:

 print(): This method in Java is used to display a text on the console. This text is passed as

the parameter to this method in the form of String. This method prints the text on the

console and the cursor remains at the end of the text at the console. The next printing takes

place from just here.

Syntax:

System.out.print(parameter);

Example PROGRAMME:

 println(): This method in Java is also used to display a text on the console. It prints the text

on the console and the cursor moves to the start of the next line at the console. The next

printing takes place from the next line.

Syntax:

System.out.println(parameter);

Example PROGRAMME:

3. System.err: This is the standard error stream that is used to output all the error data that a

program might throw, on a computer screen or any standard output device.

This stream also uses all the above-mentioned functions to output the error data:

 print()

 println()

Example:

import java.io.*;

public class SimpleIO {

 public static void main(String args[])throws IOException

 {

 InputStreamReader inp = new InputStreamReader(System.in);

 System.out.println("Enter characters, " + " and '0' to quit.");

 char c;

 do {

 c = (char)inp.read();

 System.out.println(c);

 } while (c != '0'); } }

https://www.geeksforgeeks.org/difference-between-print-and-println-in-java/
https://www.geeksforgeeks.org/difference-between-print-and-println-in-java/
https://www.geeksforgeeks.org/java-lang-system-class-java/

Sri GCSR College:Rajam Page 34

16. Explain Arrays in JAVA:-

 An array is a variable that can store multiple values of same data type that have

contiguous memory locations where as an ordinary variable can store a single value at a time.

We can store only a fixed set of elements in a Java array.

Array in java is index-based, the first element of the array is stored at the 0 index.

Advantages:

 Code Optimization: It makes the code optimized, we can retrieve or sort the data

efficiently.

 Random access: We can get any data located at an index position.

Disadvantages:

 Size Limit: We can store only the fixed size of elements in the array. It doesn't grow its

size at runtime. To solve this problem, collection framework is used in Java which grows

automatically.

Types of an Array:

There are three types of array.

A. One or Single Dimensional Array

B. Two or Double Dimensional Array

C. Multi dimensional Array

A. One-Dimensional Array:

 An Array in which list of elements are stored in continuous memory locations and

accessed using only one subscript.

Declaration of one-dimensional array:

 Syn: type array_name[];

 (or)

 type [] array_name;

Where, type is the data type of array elements; array_name is name of array variable.

Remember, we do not enter the size of the arrays in the declaration.

Creation memory locations:

Sri GCSR College:Rajam Page 35

 After declaring an array, we need to create it in the memory. Java allows us to create

arrays using new operator only.

 Syn: array_name= new type [size];

 Example: a=new int[5];

The two statements may be combined as follows:

 Syn: Type array_name[] = new type[size];

 Ex: int a[]=new int[5];

The total size of the array 5 X 4 =20 bytes, this is because each integer element requires 4

bytes for storage.

Initialization of one-dimensional array:

 Assigning values to an array when it is created is known as initialization.

 Syn: type array_name[]={list of elements separate by commas};

 Ex: int a[]={5,8,2,6};

In the above example, four elements are stored in an array ‘a’. The array elements are

stored in contiguous memory locations. The array elements are read from 0 i.e. a[0] is assigned

the value 5. Similarly a[1] is assigned the value 8, a[2] is 2 and a[3] is 6.

Subscripts can also be reflected in for loops that the array elements.

for (i=0;i<r;i++)

 {

 System.out.print(“ ”+a[i][j]);

 }

Array length: In java, we can obtain the length of the array a using a.length.

Example: int n = a.length;

for (i=0;i<=n;i++)

 System.out.print(“ “+a[i])

Example: Java Program to demonstrate - One Dimensional Array Program

B. Two-Dimensional Array:

 An Array in which list of elements are stored in some rows and columns and accessed

using two subscripts.

Declaration of two-dimensional array:

6 2 8 5

a[3] a[2] a[1] a[0]

Sri GCSR College:Rajam Page 36

 Syn: type array_name [][];

Where, type is the data type of array elements;

array_name is name of array variable. Remember, we do not

enter the size of the arrays in the declaration.

Creation memory locations:

 After declaring an array, we need to create it in the

memory. Java allows us to create arrays using new operator

only.

 Syn: array_name= new type [row_size][col_size];

 Example: a=new int a[5][3];

The two statements may be combined as follows:

 Syn: type array_name[][] = new type[row_size][col_size];

 Ex: int a[][]=new int[5][3];

The total size of the array 15 X 4 =60 bytes, this is because each integer element requires

4 bytes for storage.

Initialization of two-dimensional array:

 Assigning values to an array created is known as initialization.

 Syn: array_name [subscript1][subscript2]=value;

 (or)

 type array_name[][]={{list of elements in row},{list of elements in column}};

 Example1: a[0][0]=5; a[0][1]=8;

 int a[][]={{5,-7,2,1},{9,8,5,6},{-1,8,-3,4}};

In the above example, twelve elements are stored in an array ‘a’. The array elements are

stored in contiguous memory locations as rows and column format. The array elements are read

from (0,0) i.e. a[0][0] is assigned the value 5. Similarly a[0][1] is assigned the value -7 and so

on.

Subscripts can also be reflected in for loops that the

array elements.

for (i=0;i<r;i++) {

 for(j=0;j<c;j++) {

System.out.print(“ ”+a[i][j]);

Sri GCSR College:Rajam Page 37

 }

 }

Example: Java Program to demonstrate - two Dimensional Array Program

C. Multi-Dimensional Array:

 An Array with more than two dimensions are called multidimensional array. To create

multidimensional array add as many pair of subscripts to array variable.

 Syn: array_name [subscript1][subscript2] [subscript2]..........;

 Ex: int a[][][].............;

Each component of array a is an array in itself, and length of each rows is also different.

Example: Java Program to demonstrate - Multi Dimensional Array Program

Sri GCSR College:Rajam Page 38

UNIT – II

Strings: Creating Strings, String Class Methods, String Comparison, Immutability of Strings Introduction to

OOPs: Problems in Procedure Oriented Approach, Features of ObjectOriented Programming System (OOPS)

Classes and Objects: Object Creation, Initializing the Instance Variables, Access Specifiers, Constructors

Methods in Java:Method Header or Method Prototype, Method Body, Understanding Methods, Static

Methods, Static Block, The keyword „this‟, Instance Methods, Passing Primitive Data Types to Methods,

Passing Objects to Methods, Passing Arrays to Methods, Recursion, Factory Methods Inheritance: Inheritance,

The keyword „super‟, The Protected Specifier, Types of Inheritance

17. Explain about Strings in JAVA.

 String manipulation is the most common part of many java programs. Strings represent a

sequence of characters.

 In Java, strings are class object and implemented using two classes namely String and

StringBuffer. A Java string is an instantiated of the String class. A Java string is not a character array

and is not terminated with NULL.

 Syntax: String string_name;

 string_name = new String(“string”);

 Example: String a;

 a = new String(“JAVA”);

 The two statements may be combined as follows:

 String a = new String(“JAVA”);

 It is possible to get the length of string using the length method of the String class.

 int m = a. length()

 String c = a + b;

String Arrays: We can also create and use arrays that contain strings

 String a[]=new String[3];

 Will create an array of size 3 to hold three string constants.

String Handling Methods:

 The string class defines a number of methods that allow us to accomplish a variety of string

manipulation tasks.

A String in Java is actually an object, which contain methods that can perform certain

operations on strings.

1. length(): The length() method tells the length of the string. It returns count of total number of

characters present in the String.

Ex: String s2="whatsup";

Sri GCSR College:Rajam Page 39

System.out.println("string length is: "+s1.length());

Here, String length() function will return the length 5 for s1 and 7 for s2 respectively.

2. compareTo(): The compareTo() method compares the given string with current string. It either

returns positive number, negative number or 0.

It is noticed that

 if s1 > s2, it returns a positive number

 if s1 < s2, it returns a negative number

 if s1 == s2, it returns 0

Ex: String s1="hello";

String s2="hello";

String s3="hemlo";

String s4="flag";

System.out.println(s1.compareTo(s2)); // 0 because both are equal

System.out.println(s1.compareTo(s3)); //-1 because "l" is only one time lower than "m"

System.out.println(s1.compareTo(s4)); // 2 because "h" is 2 times greater than "f"

3. concat() : The concat() method combines a specific string at the end of another string and

ultimately returns a combined string. It is like appending another string.

Ex: String s1="hello";

s1=s1.concat("how are you");

System.out.println(s1);

Output: The above code returns “hellohow are you”.

4. toLowerCase() : The toLowerCase() method converts all the characters of the String to lower

case.

Ex: String s1="HELLO HOW Are You?”;

String s1lower=s1.toLowerCase();

System.out.println(s1lower);

Output: The above code will return “hello how are you”.

5. toUpper() : The Java String toUpperCase() method converts all the characters of the String to

upper case.

Ex: String s1="hello how are you";

String s1upper=s1.toUpperCase();

System.out.println(s1upper);

Output: The above code will return “HELLO HOW ARE YOU”.

Sri GCSR College:Rajam Page 40

6. equals() : The equals() method compares the two given strings on the basis of content of the string.

If all the characters are matched, it returns true else it will return false.

Ex: String s1="hello";

String s2="hello";

String s3="HELLO";

System.out.println(s1.equals (s2)); // returns true

System.out.println(s1.equals (s3)); // returns false

7. equalsIgnoreCase(): This method compares two string on the basis of content but it does not

check the case like equals() method. In this method, if the characters match, it returns true else

false.

Ex: String s1="hello";

String s2="HELLO";

String s3="hi";

System.out.println(s1.equalsIgnoreCase(s2)); // returns true

System.out.println(s1.equalsIgnoreCase(s3)); // returns false

8. replace() This method returns a string, replacing all the old characters or Char Sequence to new

characters.

Ex: String s1="hello how are you";

String replaceString=s1.replace('h','t');

System.out.println(replaceString);

In the above code, it will replace all the occurrences of ‘h’ to ‘t’. Output to the above code will

be “tello tow are you”.

9. charAt(): This method returns the character located at the String's specified index. The string

indexes start from zero.

Ex: String s = "Strings are immutable";

char result = s.charAt(8);

System.out.println(result);

This will produce the following result:

Output: a

10. indexOf(): This method returns the index within this string of the first occurrence of the specified

character or -1 if the character does not occur.

Ex: String Str = new String("Welcome to the java programming");

System.out.println(Str.indexOf('o'));

 Output: Found Index :4

Sri GCSR College:Rajam Page 41

Method Task performed

s2=s1.toLowerCase; Converts the string s1 to all lowercase

s2=s1.toUpperCase; Converts the string s1 to all uppercase

s2=s1.replace(‘x’,’y’); Replace all appearances of x with y

s2=s1.trim(); Remove white space s at the beginning and end of the string s1.

s1.equals(s2); Return ‘true’ if s1 is equals to s2

s1.equalsIgnoreCase(s2); Return ‘true’ if s1=s2, ignoring the case of characters

s1.lenght(); Gives the length of s1

s1.CharAt(n); Gives nth character of s1

s1.comparTo(s2) Return – if s1<s2 , + if s1>s2 and 0 if s1 =s2

s1.concat(s2); Concatenates s1 and s2

s1.substring(n); Gives substring starting from nth character

s1.substring(n,m); Gives substring starting from nth character up to mth character.

s1.indexOf(‘x’); Gives the position of the first occurrence of ‘x’ in the string s1

s1.indexOf(‘x’,n);
Gives the position of the ‘x’ that occurs after nth position in the

string s1

18. What is Stringbuffer? Explain different stringbuffer handling methods in java.

 StringBuffer in java is used to create modifiable String objects. While String creates strings of

fixed_length. StringBuffer creates strings of flexible length that can be modified in terms of both

length and content. This means that we can use StringBuffer to append, reverse, replace, concatenate

and manipulate Strings or sequence of characters.

StringBuffer defines 3 constructors. They are:

a. StringBuffer():

Creates a StringBuffer with empty content and 16 reserved characters by default.

StringBuffer sb = new StringBuffer();

b. StringBuffer(int sizeOfBuffer):

Creates a StringBuffer with the passed argument as the size of the empty buffer.

StringBuffer sb = new StringBuffer(20);

c. StringBuffer(String string):

Creates a StringBuffer with the passed String as the initial content of the buffer. 16 contingent

memory characters are pre-allocated, not including the buffer, for modification purposes.

StringBuffer sb = new StringBuffer("Hello World!");

Sri GCSR College:Rajam Page 42

String Buffer Handling Methods:

 A StringBuffer in Java is actually an object, which contain methods that can perform certain

operations on strings.

The following methods are some most commonly used methods of StringBuffer class.

1. length(): This method returns the StringBuffer object’s length.

Ex: StringBuffer sb = new StringBuffer("Hello");

int sbLength = sb.length();

System.out.println("String Length of " + sb + " is " + sbLength);

Output: String Length of Hello is 5

2. capacity(): This method returns the capacity of the StringBuffer object.

Ex: StringBuffer sb = new StringBuffer("Hello");

int sbCapacity = sb.capacity();

System.out.println("Capacity of " + sb + " is " + sbCapacity);

Output: Capacity of Hello is 21

3. append(): This method appends the specified argument string representation at the end of

the existing String Buffer.

Ex: StringBuffer sb = new StringBuffer("Hello ");

sb.append("World ");

sb.append(2017);

System.out.println(sb);

Output: Hello World 2017

4. insert(): This method takes two parameters – the index integer value to insert a value and

the value to be inserted. The index tells String Buffer where to insert the passed character

sequence.

Ex: StringBuffer sb = new StringBuffer("HelloWorld ");

sb.insert(5, 2017);

System.out.println(sb);

Output: Hello World 2017

5. s1.charAt(int index)

 The specified character of the sequence currently represented by the string buffer, as

indicated by the index argument, is returned.

6. s1.setCharAt(int index, char ch)

 The character at the specified index of this string buffer is set to ch

7. s1.toString()

Sri GCSR College:Rajam Page 43

 Converts to a string representing the data in this string buffer

8. s1.deleteCharAt(int index)

 Removes the characters at the specific index of the StringBuffer

9. s1.replace(int start, int end, String str)

 Replaces the characters in a substring of this StringBuffer with characters in the

specified String.

10. s1.setLength(int newLength)

 Sets the length of this String buffer.

11. reverse(): This method reverses the existing String or character sequence content in the

buffer and returns it.

Ex: StringBuffer sb = new StringBuffer("Hello World");

System.out.println(sb.reverse());

Output: dlroW olleH

Example: Java program by using vector class methods.

19. Explain the Difference between String class & StringBuffer class in JAVA:

 String objects are constants and immutable where as StringBuffer objects are not.

 StringBuffer Class supports growable and modifiable string where as String class supports

constant strings.

 Strings once created we cannot modify them. Any such attempt will lead to the creation of new

strings.Where as StingBuffer objects after creation also can be able to delete or append any

characteres to it.

 String values are resolved at run time where as StringBuffer values are resolved at compile

time.

20. What is Object Oriented Programming System? Explain its benefits.

Object-Oriented Programming (OOP) is the term used to describe a programming approach

based on objects and classes. The object-oriented paradigm allows us to organise software as a

collection of objects that consist of both data and behaviour. This is in contrast to conventional

functional programming practice that only loosely connects data and behaviour.

Since the 1980s the word 'object' has appeared in relation to programming languages, with

almost all languages developed since 1990 having object-oriented features. It is widely accepted that

object-oriented programming is the most important and powerful way of creating software.

Benefits of OOP:

Sri GCSR College:Rajam Page 44

 OOP offers several benefits to the program designer and the user. Object-orientation

contributes to the solutions of many problem associated with the development and quality of software

products. The new technology promises greater programmer productivity, better quality of software

and lesser maintenance cost. The benefits are:

 It is easy to model a real system as real objects are represented by programming objects in

OOP. The objects are processed by their member data and functions. It is easy to analyze the

user requirements.

 With the help of inheritance, we can reuse the existing class to derive a new class such that the

redundant code is eliminated and the use of existing class is extended. This saves time and cost

of program.

 In OOP, data can be made private to a class such that only member functions of the class can

access the data.

 This principle of data hiding helps the programmer to build a secure program that cannot be

invaded by code in other part of the program.

 With the help of polymorphism, the same function or same operator can be used for different

purposes. This helps to manage software complexity easily.

 Large problems can be reduced to smaller and more manageable problems. It is easy to

partition the work in a project based on objects.

 It is possible to have multiple instances of an object to co-exist without any interference i.e.

each object has its own separate member data and function.

 It is easy to partition the work in a project based on objects.

 Object-oriented systems can be easily upgraded from small to large system

 Message passing technique for communication between objects makes the interface

descriptions with external system much simpler.

21. Explain the Applications of Object Oriented Programming Languages.

Main application areas of OOP are:

A. Client-Server Systems

Object-oriented Client-Server Systems provide the IT infrastructure, creating object-

oriented Client-Server Internet (OCSI) applications.

B. Object Oriented Databases:

They are also called Object Database Management Systems (ODBMS). These databases

store objects instead of data, such as real numbers and integers

Sri GCSR College:Rajam Page 45

C. Real-Time System Design:

Real time systems inherit complexities that makes difficult to build them. Object-oriented

techniques make it easier to handle those complexities.

D. Simulation and Modeling System:

It’s difficult to model complex systems due to the varying specification of variables. These

are prevalent in medicine and in other areas of natural science, such as ecology, zoology, and

agronomic systems

E. Hypertext and Hypermedia:

OOP also helps in laying out a framework for Hypertext. Basically, hypertext is similar to

regular text as it can be stored, searched, and edited easily.

F. Neural Networking and Parallel Programming:

It addresses the problem of prediction and approximation of complex time-varying

systems. Firstly, the entire time-varying process is split into several time intervals or slots.

G. Office Automation Systems:

These include formal as well as informal electronic systems primarily concerned with

information sharing and communication to and from people inside as well as outside the

organization. Like Email ,Word processing etc..

H. CIM/CAD/CAM Systems:

OOP can also be used in manufacturing and design applications as it allows people to

reduce the effort involved.

I. AI Expert Systems:

These are computer applications which are developed to solve complex problems

pertaining to a specific domain, which is at a level far beyond the reach of a human brain.

21. Explain the Basic concepts of OOPs.

Object Oriented Programming (OOP) is a programming model where programs are organized

around objects and data rather than action and logic.

OOP allows decomposition of a problem into a number of entities called objects and then

builds data and functions around these objects.

The software is divided into a number of small units called objects. The data and functions are

built around these objects.

The data of the objects can be accessed only by the functions associated with that object.The

functions of one object can access the functions of another object.

Java supports the following fundamental concepts −

A. Class

Sri GCSR College:Rajam Page 46

B. Objects

C. Abstraction

D. Encapsulation

E. Polymorphism

F. Inheritance

G. Message Passing

H. Dynamic binding

I. Data hiding

A. Class:

In OOP languages it is mandatory to create a class for representing data.

A class is a blueprint from which individual objects are created. A class contains variables for

storing data and functions to perform operations on the data. A class will not occupy any memory

space and hence it is only a logical representation of data. To create a class, you simply use the

keyword "class" followed by the class name.

For example, if you had a class called “Expensive Cars” it could have objects like Mercedes,

BMW, Toyota, etc. Its properties (data) can be price or speed of these cars. While the methods may be

performed with these cars are driving, reverse, braking etc.

B. Object:

Objects are the basic run-time entities of an object oriented system. They may represent a

person, a place or any item that the program must handle.

An object can be defined as an instance of a class, and there can be multiple instances of a

class in a program. An Object contains both the data and the function, which operates on the data.

Objects have states, behaviours and identifier.

Example: A dog has states - color, breed as well as behaviors – wagging the tail, barking,

eating. An object is an instance of a class.

A class will not occupy any memory space. Hence to work with the data represented by the

class you must create a variable for the class that is called an object.

When an object is created using the new operator, memory is allocated for the class in the

heap, the object is called an instance and its starting address will be stored in the object in stack

memory.

When an object is created without the new operator, memory will not be allocated in the heap,

in other words an instance will not be created and the object in the stack contains the value null.

When an object contains null, then it is not possible to access the members of the class using

that object.

Sri GCSR College:Rajam Page 47

C. Abstraction:

An abstraction is an act of representing essential features without including background details.

It is a technique of creating a new data type that is suited for a specific application. Abstraction lets

you focus on what the object does instead of how it does it.

Abstraction provides you a generalized view of your classes or objects by providing relevant

information. Abstraction is the process of hiding the working style of an object, and showing the

information of an object in an understandable manner.

For example, while driving a car, you do not have to be concerned with its internal working.

Here you just need to concern about parts like steering wheel, Gears, accelerator, etc.

D. Encapsulation

Wrapping up a data member and a method together into a single unit (in other words class) is

called Encapsulation.

Encapsulation means hiding the internal details of an object, in other words how an object does

something. It prevents clients from seeing it’s inside view, where the behaviour of the abstraction is

implemented. It is a technique used to protect the information in an object from another object. Hide

the data for security such as making the variables private, and expose the property to access the private

data that will be public.

So, when you access the property you can validate the data and set it.

Encapsulation is like enclosing in a capsule. That is enclosing the related operations and data

related to an object into that object.

Encapsulation is like your bag in which you can keep your pen, book etcetera. It means this is the

property of encapsulating members and functions.

class Bag

{

 book;

 pen;

 ReadBook();

}

E. Polymorphism

Polymorphism means one name, many forms. One function behaves in different forms.

Polymorphism refers to the ability of a variable, object or function to take on multiple forms.

F. Inheritance

Inheritance is a mechanism in which one class acquires the property of another class. It’s

creating a parent-child relationship between two classes. With inheritance, we can reuse the fields and

Sri GCSR College:Rajam Page 48

methods of the existing class. Hence, inheritance facilitates Reusability and is an important concept of

OOPs.

 In Java, when an "Is-A" relationship exists between two classes we use Inheritance

 The parent class is termed super class and the inherited class is the sub class

 The keyword "extend" is used by the sub class to inherit the features of super class

Inheritance is important since it leads to reusability of code

G. Dynamic Binding:

Binding refers to the linking of a procedure call to the code to be executed in response to the

call. Dynamic binding means that the code associated with a given procedure call is not known until

the time of execution.

H. Message passing:

An object oriented program consists of a set of objects that communicate with each other. The

process of programming in an object oriented language is:

 Create classes that define objects.

 Creating objects from class definitions.

 Establishing communication among objects.

22. Explain the Difference between Procedural Oriented Programming and Object-Oriented

Programming.

Procedural Oriented Programming Object-Oriented Programming

In procedural programming, the program is

divided into small parts called functions.

In object-oriented programming, the program is

divided into small parts called objects.

Procedural programming follows a top-down

approach.

Object-oriented programming follows a bottom-

up approach.

There is no access specifier in procedural

programming.

Object-oriented programming has access

specifiers like private, public, protected, etc.

Adding new data and functions is not easy. Adding new data and function is easy.

In procedural programming, overloading is not

possible.

Overloading is possible in object-oriented

programming.

Sri GCSR College:Rajam Page 49

Procedural Oriented Programming Object-Oriented Programming

In procedural programming, there is no concept

of data hiding and inheritance.

In object-oriented programming, the concept of

data hiding and inheritance is used.

In procedural programming, the function is more

important than the data.

In object-oriented programming, data is more

important than function.

Procedural programming is used for designing

medium-sized programs.

Object-oriented programming is used for

designing large and complex programs.

Procedural programming uses the concept of

procedure abstraction.

Object-oriented programming uses the concept of

data abstraction.

Code reusability absent in procedural

programming,

Code reusability present in object-oriented

programming.

Examples: C, FORTRAN, Pascal, Basic, etc. Examples: C++, Java, Python, C#, etc.

23. What is class? Explain the building blocks of a class.

 A class is user defined data type with A a blueprint or prototype that defines the variables and

the methods (functions) common to all objects of a certain kind. If once the class is defined then we

can create any number of objects of that type. These objects are called as instances of classes. A class

binds the data and its associated methods together and hides them.

 Syntax: class class_name

 {

 field declarations;

 method declarations;

 }

 Ex: class student

 {

 int x, y;

 void getdata(int a, int b)

 {

 x = a;

 y = b; } }

Sri GCSR College:Rajam Page 50

Java Class Building Blocks:

 A Java class can contain the following building blocks:

1. Fields

2. Constructors

3. Methods

4. Nested Classes

1. Fields are variables (data) that are local to the class, or instances (objects) of that class.

2. Constructors are methods that initialize an instance of the class. Constructors often sets the values

of fields in the given instance

3. Methods are operations that the class or instances of that class can perform. For instance, a

method may perform an operation on input parameters, or change the value of fields kept

internally in the object etc.

4. Nested classes are Java classes that are defined inside another class.

 Not all Java classes have fields, constructors and methods. Sometimes you have classes that

only contain fields (data), and sometimes you have classes that only contain methods (operations). It

depends on what the Java class is supposed to do.

Fields declaration:

 It is a place where we can declare the type and scope of the variables that are to be used in the

program. These variables are called instance variables because they are created whenever and object of

the class in instantiated.

 Syntax: data_type variable1, variable2, …. , variable n;

 Ex: int l, b;

Methods declaration:

 Methods are used to manipulate the data that is present in the class. Methods are declared

inside the body of the class but immediately after the declaration of variables.

 Syntax: type method_name(arguments list)

 {

 body of the method; }

 Ex: void getdata(int a, int b)

 {

 x = a;

 y = b;

 }

Sri GCSR College:Rajam Page 51

 Here The type specifies the type of value that the method would return. The method name is a

valid identifier. The argument list contains the variables and their types. The body of the method

describes the operations to be performed on the data.

24. What is Object? How to create objects in JAVA.

 A class provides the blueprints for objects. So basically, an object is created from a class. The

declaration of an object is similar to the declaration of a variable. But to declare a variable we need

primitive data types like int or float. To declare an object we a non-primitive data types such as classes

or interfaces.

 Creating an object is also called as instantiating an object. In java objects are created using a

new operator.

There are three steps when creating an object from a class −

 Declaration − A variable declaration with a variable name with an object type.

 Instantiation − The 'new' keyword is used to create the object.

 Initialization − The 'new' keyword is followed by a call to a constructor. This call initializes

the new object.

Syntax: class_name object_name;

 Object_name = new default constructor();

Ex: student s; // declare the object

 s = new student(); // instantiate the object

 Here The first statement declares a variable to hold the object’s address. The statement assigns

the object’s address to the variable.

Accessing class members:

 Each object containing its own set of variables. All variables must be assigned values before

they are used. We cannot access the instance variable and the method directly, when we are in outside

the class. Instance variables and methods are accessed via created objects with the . operator.

Accessing variables of a class:

 Syntax: object_name.variable

 Ex: s. a =3;

Accessing methods of a class:

 Syntax: object_name.method_name(parameter list);

 Ex: s. getdata(2, 3);

Memory allocation for objects:

Sri GCSR College:Rajam Page 52

 Memory space for objects is allocated when they are declared and not when the class is

specified. The member functions are created and placed in the memory only once when they are

defined as a part of a class.

Example1: Java Program to illustrate the use of Rectangle class which

has length and width data members.

Example2: Java Program to demonstrate the working of a banking-system where we deposit

and withdraw amount from our account.

25. What is constructor? Explain different types of Constructors in Java:

In Java, A constructor in Java is a special method that is used to initialize objects. The

constructor is called when an object of a class is created. It can be used to set initial values for object

attributes. It is called when an instance of the object is created, and memory is allocated for the object.

It is a special type of method which is used to initialize the object.

It is called constructor because it constructs the values at the time of object creation. It is not

necessary to write a constructor for a class. It is because java compiler creates a default constructor if

your class doesn't have any.

Every time an object is created using new() keyword, at least one constructor is called. It calls

a default constructor.

Rules for creating Java constructor:

1. Constructor name must be the same as its class name.

2. A Constructor must have no explicit return type.

3. A Java constructor cannot be abstract, static, final, and synchronized.

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Default constructor:

The default constructor is used to provide the default values to the object like 0, null, etc.,

depending on the type. you are not creating any constructor so compiler provides you a default

constructor. Here 0 and null values are provided by default constructor.

 Ex: Square()

 {

 }

Sri GCSR College:Rajam Page 53

Example: java program to demonstrate constructor statement.

Default constructor.java

Parameterized Constructor:

A constructor which has a specific number of parameters is called a parameterized

constructor. The parameterized constructor is used to provide different values to the distinct objects.

However, you can provide the same values also.

Ex: Square(int x, int y)

{ --------- -------- }

Ex: Program for demonstrating the concept of Parameterised constructor.

public class MyClass

{

 int x;

 public MyClass(int y)

{

 x = y;

 }

}

Class ParameterisedEx

{

 public static void main(String[] args)

{

 MyClass myObj = new MyClass(5);

 System.out.println(myObj.x);

 }

}

26. Explain the Static Keyword in JAVA.

Static keyword can be used with class, variable, method and block. Static members belong to

the class instead of a specific instance, this means if you make a member static, you can access it

without object. Static members are common for all the instances(objects) of the class.

The static can be used as:

1. Variable (also known as a class variable)

2. Method (also known as a class method)

3. Block

Sri GCSR College:Rajam Page 54

4. Nested class

1) Java static variable:

If you declare any variable as static, it is known as a static variable. The static variable can be

used to refer to the common property of all objects (which is not unique for each object), for example,

the company name of employees, college name of students, etc.

The static variable gets memory only once in the class area at the time of class loading.

Example: Java Program to demonstrate the use of static variable

2) Java static method:

If you apply static keyword with any method, it is known as static method. A static method

belongs to the class rather than the object of a class. A static method can be invoked without the need

for creating an instance of a class. A static method can access static data member and can change the

value of it.

Example: Java Program to demonstrate the use of a static method.

Restrictions for the static method:

There are two main restrictions for the static method. They are:

1. The static method cannot use non static data member or call non-static method directly.

2. This and super cannot be used in static context.

27. Explain Nesting of Methods in JAVA.

When a method in java calls another method in the same class, it is called Nesting of methods.

Enter length, breadth and height as input. After that we first call the volume method. From

volume method we call area method and from area method we call perimeter method. Hence we get

perimeter, area and volume of cuboids as output.

Here is the source code of the Java Program to Show the Nesting of Methods. The Java

program is successfully compiled and run on a Windows system.

Example: java program to demonstrate nested methods statement.

A nested method must have access to the main method declarations, as well as what can access

the main method. A nested method can be called by the code in the main method that follows the

declaration of the nested method, or by other nested methods of the main method. The principle is

recursive: A nested method can itself have nested methods.

28. What is Inheritance? Explain its types.

 The mechanism of deriving a new class from an old class is called inheritance. The old class is

referred to as the base class and the new class is called the derived class. This concept supports the

reusability feature of java.

Sri GCSR College:Rajam Page 55

 The derived class inherits some or all the properties from the base class. A class can also

inherit properties from more than one class or more than one level.

 The keyword extends indicates that the properties of the super class are extended to the

subclass. Now the subclass will contain both subclass and super class properties in it. The meaning of

extends is to increase the functionality.

Defining super class:

 The class whose properties are used by another class is known as super or base or parent class.

A subclass is defined as follows:

 Syn: class super class name

 {

 data members;

 member functions;

 }

Defining a subclass:

 The class that extends the features of super class is known as sub or derived or child class. A

subclass is defined as follows:

 Syn: class subclass name extends superclass name

 {

 data members;

 member functions;

 }

A sub class can access only public or protected members of the super class.

Example:

Types of inheritance in java:

 On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

 In java programming, multiple and hybrid inheritance is supported through interface only.

A. Single Inheritance:

 In single inheritance, subclass inherits the features of one

super class. In image below, the class A serves as a base class for the

derived class B.

Example: java program to demonstrate single inheritance.

B. Multi Level Inheritance:

Sri GCSR College:Rajam Page 56

 In Multilevel Inheritance, a derived class will be inheriting a base class and as well as the

derived class also act as the base class to other class. In below image, the class A serves as a base class

for the derived class B, which in turn serves as a base class(called intermediate base class) for the

derived class C.

Example: java program to demonstrate

class Animal

{

void eat(){System.out.println("eating...");

}

}

class Dog extends Animal

{

void bark(){System.out.println("barking...");

}

}

class BabyDog extends Dog

{

void weep()

{

System.out.println("weeping...");

}

}

class MultilevelInheritance

{

public static void main(String args[])

{

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

}

}

C. Hierarchical inheritance:

Sri GCSR College:Rajam Page 57

 In Hierarchical Inheritance, one class serves as a superclass (base class) for more than one sub

class.In below image, the class A serves as a base class for the derived class B,C and D.

Example: java program to demonstrate Hierarchical inheritance

D. Multiple Inheritance:

 Multiple Inheritance is a feature of object oriented concept,

where a class can inherit properties of more than one parent class.

 Please note that Java does not support multiple

inheritance with classes. In java, we can achieve multiple

inheritance only through Interfaces. In image below, Class C is

derived from interface A and B.

E. Hybrid Inheritance(Through Interfaces) :

 It is a mix of two or more of the above types of inheritance.

Since java doesn’t support multiple inheritance with classes, the

hybrid inheritance is also not possible with classes. In java, we can

achieve hybrid inheritance only through Interfaces.

29. Why multiple inheritance is not supported in java?

 The problem occurs when there exist methods with same signature in both the super classes

and subclass. On calling the method, the compiler cannot determine which class method to be called

and even on calling which class method gets the priority.

 To reduce the complexity and simplify the language, multiple inheritance is not supported in

java.

 Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes.

If A and B classes have the same method and you call it from child class object, there will be

ambiguity to call the method of A or B class.

 Since compile-time errors are better than runtime errors, Java renders compile-time error if you

inherit 2 classes. So whether you have same method or different, there will be compile time error.

Example: java program to demonstrate multiple inheritance

class A

{

void msg(){System.out.println("Hello");

}

}

class B

Sri GCSR College:Rajam Page 58

{

void msg(){System.out.println("Welcome");

}

}

class C extends A,B

{

//suppose if it were

public static void main(String args[])

{

C obj=new C();

obj.msg(); //Now which msg() method would be invoked? }}

30. Explain different Visibility Controls available in JAVA.

 How a member can be accessed is determined by the access specifier that modifies its

declaraion. Java supplies a rich set of access specifiers. Some acpects of access control are related

mostly to inheritance or packages.

 Java's access specifiers are public, private and protected. Java

also defines a default access level.

Public:

 When a member of a class is modified by the public specifier

then that member can be accesed by any other code in your program.

private

 When a member of a class is specified as private then that

member can only be accessed by other members of its class.

Default access specifier

When no access specifier is used then by default the member of

a class is public within it's own package but cannot be accessed

outside of its package.

Protected:

When a member of a class is specified as protected it is

available to all classes in the same package and also available to all

subclasses of the class that owns the protected feature.

This access is provided even to subclasses that reside in a

Sri GCSR College:Rajam Page 59

different package from the class that owns the protected feature.

The following table lists the visibility modifiers and their visibility areas.

 private No Modifier protected public

 Same class Yes Yes Yes Yes

Same package sub class No Yes Yes Yes

Same package Non-sub class No Yes Yes Yes

Different package sub class No No Yes Yes

Different package Non-sub class No No No Yes

31. Explain about Final Keyword in Java.

 The final keyword in java is used to restrict the user. The java final keyword can be used in

many context. Final can be:

1. variable

2. method

3. class

 The final keyword can be applied with the variables, a final variable that have no value it is

called blank final variable or uninitialized final variable. It can be initialized in the constructor only.

The blank final variable can be static also which will be initialized in the static block only. We will

have detailed learning of these. Let's first learn the basics of final keyword

1) Java final variable:

 If you make any variable as final, you cannot change the value of final variable(It will be

constant).

Sri GCSR College:Rajam Page 60

 There is a final variable speed limit, we are going to change the value of this variable, but It

can't be changed because final variable once assigned a value can never be changed.

Example: java program to demonstrate final variable

2) Java final method: When a method is declared with final keyword, it is called a final

method. A final method cannot be overridden. The Object class does this—a number of its methods

are final. We must declare methods with final keyword for which we required to follow the same

implementation throughout all the derived classes. The following fragment illustrates final keyword

with a method:

Example: java program to demonstrate final method

If you make any method as final, you cannot override it.

3) Java final class: When a class is declared with final keyword, it is called a final class. A final

class cannot be extended(inherited).

There are two uses of a final class :

1. One is definitely to prevent inheritance, as final classes cannot be extended.

 For example, all Wrapper Classes like Integer,Float etc. are final classes. We cannot

extend them.

final class A

{

 // methods and fields

}

class B extends A // The following class is illegal.

{

 // COMPILE-ERROR! Can't subclass A

}

2. The other use of final with classes is to create an immutable class like the

predefined String class. You cannot make a class immutable without making it final.

 Immutable class means that once an object is created, we cannot change its content. In

Java, all the wrapper classes (like String, Boolean, Byte, Short) and String class is immutable.

Example: java program to demonstrate final class

If you make any class as final, you cannot extend it.

https://www.geeksforgeeks.org/overriding-in-java/
https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/inheritance-in-java/
https://www.geeksforgeeks.org/wrapper-classes-java/
https://www.geeksforgeeks.org/java-lang-integer-class-java/
https://www.geeksforgeeks.org/java-lang-float-class-in-java/
https://www.geeksforgeeks.org/string-class-in-java/

Sri GCSR College:Rajam Page 65

UNIT – III

 Polymorphism: Polymorphism with Variables, Polymorphism using Methods, Polymorphism with Static

Methods, Polymorphism with Private Methods, Polymorphism with Final Methods, final Class Type

Casting: Types of Data Types, Casting Primitive Data Types, Casting Referenced Data Types, The Object

Class Abstract Classes: Abstract Method and Abstract Class Interfaces: Interface, Multiple Inheritance

using Interfaces Packages: Package, Different Types of Packages, The JAR Files, Interfaces in a Package,

Creating Sub Package in a Package, Access Specifiers in Java, Creating API Document Exception Handling:

Errors in Java Program, Exceptions, throws Clause, throw Clause, Types of Exceptions, Re – throwing an

Exception.

32. What is Polymorphism?

One of the important concepts in Object Oriented Programming (OOP)

is polymorphism which means that a single action can be performed in different ways. It is

derived from the Greek words: poly and morphs meaning many and forms. The different forms

exist when they are related through inheritance.

Polymorphism in Java creates a single method render() that behaves according to different

shapes. A real-life example of polymorphism would be a woman who is a Vice President of a

company, daughter, mother, sister, or wife.

33. Explain Method Overloading in Java.

Method Overloading is a feature that allows a class to have more than one method having

the same name, if their argument lists are different as number of input parameters or type of

input parameters or order of input parameters. If we have to perform only one operation, having

same name of the methods increases the readability of the program. Overloading is related to

compile time (or static) polymorphism.

Suppose you have to perform addition of the given numbers but there can be any number

of arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for

three parameters then it may be difficult for you as well as other programmers to understand the

behavior of the method because its name differs.

So, we perform method overloading to figure out the program quickly.

Three ways to overload a method:

In order to overload a method, the argument lists of the methods must differ in either of

these:

1. Number of parameters.

 Example: add(int, int)

https://www.upgrad.com/blog/what-is-polymorphism/

Sri GCSR College:Rajam Page 66

 add(int, int, int)

2. Data type of parameters.

 Example: add(int, int)

add(int, float)

3. Sequence of Data type of parameters.

 Example: add(int, float)

 add(float, int)

Invalid case of method overloading:

 If two methods have same name, same parameters and have different return type, then

this is not a valid method overloading. This will throw compilation error.

int add(int, int)

float add(int, int)

Points to Note:

 1. Static Polymorphism is also known as compile time binding or early binding.

 2. Static binding happens at compile time. Method overloading is an example of static

binding where binding of method call to its definition happens at Compile time.

Example 1: Overloading – Different Number of parameters in argument list

Example 2: Overloading – Difference in data type of parameters

Example3: Overloading – Sequence of data type of arguments

Example: Java program to demonstrate working of method overloading in Java.

public class Sum

{

public int sum(int x, int y) { return (x + y); }

public int sum(int x, int y, int z) { return (x + y + z); }

public double sum(double x, double y) { return (x + y); }

}

class MethodOverloadEx

{

 public static void main(String args[])

{

Sum s = new Sum();

System.out.println(s.sum(10, 20));

System.out.println(s.sum(10, 20, 30));

Sri GCSR College:Rajam Page 67

System.out.println(s.sum(10.5, 20.5)); } }

35. Explain Method overriding in JAVA.

 Defining a method in the sub class that has the same name, same arguments and same

return type as a method in the super class. When method is called, the method defined in the

subclass is invoked and executed instead of the one in the super class. This is known as

overriding.

Usage of Java Method Overriding:

 Method overriding is used to provide the specific implementation of a method which is

already provided by its super class.

 Method overriding is used for runtime polymorphism.

Rules for Java Method Overriding:

 The method must have the same name as in the parent class.

 The method must have the same parameter as in the parent class.

 There must be an IS-A relationship (inheritance).

Example: Program for implementing Method Overriding.

class Vehicle

{

void run() //defining a method

{

System.out.println("Vehicle is running");

}

}

class Bike2 extends Vehicle //Creating a child class

{

void run() //defining the same method as in the parent class

{

System.out.println("Bike is running safely");

}

public static void main(String args[])

{

Bike2 obj = new Bike2(); //creating object

obj.run(); //calling method } }

Sri GCSR College:Rajam Page 68

36. Explain the Difference between method overloading and method overriding in java.

 There are many differences between method overloading and method overriding in java.

A list of differences between method overloading and method overriding are given below:

No. Method Overloading Method Overriding

1) Method overloading is used to increase the

readability of the program.

Method overriding is used to provide the

specific implementation of the method that

is already provided by its super class.

2) Method overloading is performed within

class.

Method overriding occurs in two

classes that have IS-A (inheritance)

relationship.

3) In case of method overloading, parameter

must be different.

In case of method overriding, parameter

must be same.

4) Method overloading is the example

of compile time polymorphism.

Method overriding is the example of run

time polymorphism.

5) In java, method overloading can't be

performed by changing return type of the

method only. Return type can be same or

different in method overloading. But you

must have to change the parameter.

Return type must be same or covariant in

method overriding.

1. Ex:

2. class OverloadingExample

3. {

4. static int add(int a,int b)

5. {

6. return a+b;

7. }

8. static int add(int a,int b,int c)

{

return a+b+c;

}

}

1. Ex:

2. class Animal

3. {

4. void eat()

5. {

6. System.out.println("eating...");

7. }

8. }

9. class Dog extends Animal

10. {

void eat()

{

System.out.println("eating bread...");}}

Sri GCSR College:Rajam Page 69

37. Explain the Types of Polymorphism in Java

Object-Oriented Programming focuses on four basic concepts i.e. abstraction,

encapsulation, inheritance, and polymorphism. Polymorphism is the ability to process objects

differently on the basis of their class and data types. As discussed, that polymorphism is of

different types, for it to cover different types of data. Nd polymorphism has properties and

methods.

There are two types of polymorphism in Java: compile time polymorphism and run time

polymorphism in java. This java polymorphism is also referred to as static polymorphisms

and dynamic polymorphisms.

1. Static polymorphism (or compile-time polymorphism)

Like most of the other OOP programming languages, Java polymorphism allows the

incorporation of multiple methods within a class. The methods use the same name but the

parameter varies. This represents the static polymorphism. This polymorphism is resolved during

the compiler time and is achieved through the method overloading. (Compile-time

Polymorphism) Static Polymorphism in Java decides which method to execute during compile

time.

Example of static polymorphism

One of the ways by which Java supports static polymorphism is method overloading. An

example showing the case of method overloading in static polymorphism is shown below:

Example:

class SimpleCalculator

{

 int add(int a, int b) { return a+b; }

 int add(int a, int b, int c) { return a+b+c; }

}

public class Demo

{

 public static void main(String args[])

 {

 SimpleCalculator obj = new SimpleCalculator();

 System.out.println(obj.add(25, 25));

 System.out.println(obj.add(25, 25, 30));

 } }

https://www.upgrad.com/blog/polymorphism-in-oops/

Sri GCSR College:Rajam Page 70

2. Dynamic Polymorphism (or run time polymorphism in Java)

In this form of polymorphism in java, the compiler doesn’t determine the method to be

executed. It’s the Java Virtual Machine (JVM) that performs the process at the run

time. Dynamic polymorphism in Java refers to the process when a call to an overridden process

is resolved at the run time. The reference variable of a superclass calls the overridden method. As

the name dynamic connotes, dynamic polymorphism happens among different classes as

opposed to static polymorphism. Dynamic polymorphism facilitates the overriding of methods in

Java which is core for run-time polymorphism.

Example of Dynamic polymorphism (or run time)

class Bike{

 void run(){System.out.println(“running”);}

}

class Splendor extends Bike{

 void run(){System.out.println(“walking safely with 30km”);}

 public static void main(String args[]){

 Bike b = new Splendor();//upcasting

 b.run();

 }

}

38. Explain about Type Casting in Java.

In Java, type casting is a method or process that converts a data type into another data

type in both ways manually and automatically. The automatic conversion is done by the compiler

and manual conversion performed by the programmer. In this section, we will discuss type

casting and its types with proper examples.

Sri GCSR College:Rajam Page 71

Type casting

Convert a value from one data type to another data type is known as type casting.

Types of Type Casting

There are two types of type casting:

o Widening Type Casting

o Narrowing Type Casting

Widening Type Casting

Converting a lower data type into a higher one is called widening type casting. It is also

known as implicit conversion or casting down. It is done automatically. It is safe because there

is no chance to lose data. It takes place when:

o Both data types must be compatible with each other.

o The target type must be larger than the source type.

1. byte -> short -> char -> int -> long -> float -> double

For example, the conversion between numeric data type to char or Boolean is not done

automatically. Also, the char and Boolean data types are not compatible with each other. Let's

see an example.

Example

public class WideningTypeCastingExample

{

public static void main(String[] args)

{

int x = 7;

//automatically converts the integer type into long type

long y = x;

//automatically converts the long type into float type

float z = y;

System.out.println("Before conversion, int value "+x);

System.out.println("After conversion, long value "+y);

System.out.println("After conversion, float value "+z);

}

}

Sri GCSR College:Rajam Page 72

Narrowing Type Casting

Converting a higher data type into a lower one is called narrowing type casting. It is also

known as explicit conversion or casting up. It is done manually by the programmer. If we do

not perform casting then the compiler reports a compile-time error.

1. double -> float -> long -> int -> char -> short -> byte

Example

public class NarrowingTypeCastingExample

{

public static void main(String args[])

{

double d = 166.66;

//converting double data type into long data type

long l = (long)d;

//converting long data type into int data type

int i = (int)l;

System.out.println("Before conversion: "+d);

//fractional part lost

System.out.println("After conversion into long type: "+l);

//fractional part lost

System.out.println("After conversion into int type: "+i);

}

}

39. Explain about Object class in Java

The Object class is the parent class of all the classes in java by default. In other words, it

is the topmost class of java. The Object class is beneficial if you want to refer any object whose

type you don't know. Notice that parent class reference variable can refer the child class object,

know as upcasting.

Let's take an example, there is getObject() method that returns an object but it can be of any type

like Employee,Student etc, we can use Object class reference to refer that object. For example:

Object obj=getObject();//we don't know what object will be returned from this method

The Object class provides some common behaviors to all the objects such as object can

be compared, object can be cloned, object can be notified etc.

Sri GCSR College:Rajam Page 73

Methods of Object class

The Object class provides many methods. They are as follows:

Method Description

public final Class getClass() returns the Class class object of this object. The Class

class can further be used to get the metadata of this class.

public int hashCode() returns the hashcode number for this object.

public boolean equals(Object obj) compares the given object to this object.

protected Object clone() throws

CloneNotSupportedException

creates and returns the exact copy (clone) of this object.

public String toString() returns the string representation of this object.

public final void notify() wakes up single thread, waiting on this object's monitor.

public final void notifyAll() wakes up all the threads, waiting on this object's monitor.

public final void wait(long timeout)throws

InterruptedException

causes the current thread to wait for the specified

milliseconds, until another thread notifies (invokes

notify() or notifyAll() method).

public final void wait(long timeout,int

nanos)throws InterruptedException

causes the current thread to wait for the specified

milliseconds and nanoseconds, until another thread

notifies (invokes notify() or notifyAll() method).

public final void wait()throws

InterruptedException

causes the current thread to wait, until another thread

notifies (invokes notify() or notifyAll() method).

protected void finalize()throws Throwable is invoked by the garbage collector before object is being

garbage collected.

40. What is Abstraction? Explain the Abstract Keyword In Java.

 Abstract is a non-access modifier in java applicable for classes, methods but not

variables. It is used to achieve abstraction which is one of the pillar of Object Oriented

programming (OOP) . Following are different contexts where abstract can be used in Java.

1. Abstract classes

Sri GCSR College:Rajam Page 74

2. Abstract methods

1. Abstract classes:

 The class which is having partial implementation(i.e. not all methods present in

the class have method definition). To declare a class abstract, use this general form :

abstract class class-name

{

 //body of class

}

 Due to their partial implementation, we cannot instantiate abstract classes. Any subclass

of an abstract class must either implement all of the abstract methods in the super-class, or be

declared abstract itself. Some of the predefined classes in java are abstract. They depends on

their sub-classes to provide complete implementation.

 For example, java.lang.Number is a abstract class.

2. Abstract methods:

Sometimes, we require just method declaration in super-classes. This can be achieve by

specifying the abstract type modifier. These methods are sometimes referred to as subclasser

responsibility because they have no implementation specified in the super-class. Thus, a subclass

must override them to provide method definition.

 To declare an abstract method, use this general form:

 abstract type method-name(parameter-list);

 As you can see, no method body is present. Any concrete class(i.e. class without abstract

keyword) that extends an abstract class must overrides all the abstract methods of the class.

 Any class that contains one or more abstract methods must also be declared abstract.

Consider the following java program, that illustrate the use of abstract keyword with classes and

methods.

Example: A java program to demonstrate the use of abstract keyword.

abstract class A // abstract with class

{

abstract void m1(); // abstract with method. it has no body

void m2() // concrete methods are still allowed in abstract classes

{

System.out.println("This is a concrete method.");

}

https://www.geeksforgeeks.org/java-lang-number-class-java/
https://www.geeksforgeeks.org/overriding-in-java/

Sri GCSR College:Rajam Page 75

}

class B extends A // concrete class B

{

void m1() // class B must override m1() method otherwise, compile- time

{ exception will be thrown

System.out.println("B's implementation of m2.");

}

}

class AbstractDemo

{

public static void main(String args[])

{

B b = new B();

b.m1();

b.m2();

}

}

41. Explain about Super Keyword in Java.

 The super keyword in java programming language refers to the superclass of the class

where the super keyword is currently being used.

 The super keyword as a standalone statement is used to call the constructor of the

superclass in the base class.

 The syntax for using super to call the super class constructor

class subclass extends superclass

{

subclass(args)

{

super(args);

 //Statements;

}

.....................

}

Sri GCSR College:Rajam Page 76

 When used as a standalone statement to call the superclass constructor the super should be

the first statement within the subclass constructor.

 The syntax to call method of super class using super

 super.<method_Name>(args) ;

 This kind of use of the super keyword is only necessary when we need to call a method

that is overridden in this base class in order to specify that the method should be called on the

superclass.

Example: A java program to demonstrate the use of super keyword.

class Superclass

{

int x;

Superclass(int a) { x=a; }

void display() { System.out.println(“Super x=”,+x); }

}

class Sub extends Superclass

{

int y;

Sub(int a,int b) { super(a); y=b; }

void display()

{

System.out.println(“Super x=”,+x);

System.out.println(“Sub y=”,+y);

}

}

Class Override

{

public static void main(String args[])

{

Sub s1=new Sub(100,200);

S1.display();

}

}

Note that the method display () defined in the subclass is invoked.

Sri GCSR College:Rajam Page 77

42. What is Interface? Explain.

 An interface is basically a kind of class. The difference is that interfaces define only

abstract methods and final fields. This means that interfaces do not specify any code to

implement these methods and data fields contain only constants.

interface interface_name

{

final Variable declaration;

abstact Method declaration;

}

Here, interface is the keyword and interface_name is any valid java identifier. Variables

are declared as follows:

 Static final type variable_Name = value;

 Note that all variables are declared as constants. Method declaration will contain only a

list of methods without anybody statement.

 return_type method_name (parameter_list);

Example: interface Area

 {

 final static float PI=3.14f;

 float compute(float x,float y);

 }

Extending interfaces:

 Interfaces can also be extended. An interface can be sub interfaced from other interfaces.

The new sub interface will inherit all the members of the super interface in the manner similar to

subclasses. This is achieved using the keyword extends as…

interface name2 extends name1

{

Body of name2;

}

We can put all the constants in one interface and the methods in the other. This will

enable us to use the constant in classes where the methods are not required.

interface A

{

 final static float PI=3.14f;

Sri GCSR College:Rajam Page 78

}

interface Area extends A

{

 float compute(float x,float y);

}

Implementing interfaces:

 implements is a keyword used to give implementation for the interface methods in its sub

class. Interfaces are used as super classes whose properties are inherited classes.

Syn: class classname implements interfacename1, interfacename2

 {

 Body of the class

 }

Here, the class class_name implements the interface interface_name.

Example:

class Rectangle implements Area

{

public float compute(float x,float y)

{

return(x*y);

}

}

Example: Java program for implementing interfaces.

 Any number of dissimilar classes can implement an interface. However, to implement the

methods we need to refer to the class objects as types of the interface rather than types of their

respective classes. Note that if a class that implements an interface does not implement all the

methods of the interface, then the class becomes an abstract class and cannot be instantiated.

Accessing interface variables:

 Interfaces can be used to declare a set of constants that can be used in different classes.

The interfaces do not contain methods. The constant values will be available to any class that

implements the interface. The values can be used in any method, as part of any variable

declaration.

Sri GCSR College:Rajam Page 79

interface A

{

final static int m=10;

final static int n=50;

}

class B implements A

{

int x=m;

void methodB(int size)

{

…………

if(size<n)

………….

}

}

Example: Implementing multiple inheritance.

Eample: Implementing hybrid inheritance.

43. What is Package?

 One of the main important features of object oriented programming is the reuse of the

program code already created. One way of achieving this is by extending the classes

(inheritance) and implementing the interfaces. This is limited to reuse in the classes with in a

program only.

 If we need to use classes from other programs without physically copying them into the

program this can be achieved in java by using packages.

What is a package?

 Package is nothing but collection of classes and interfaces. A package that is contained in

another package is sometimes called a "sub-package."

By organizing our classes into packages we can achieve the following benefits.

 The following is the partial graphical representation of the levels of nesting in the java

package, its sub-packages, the classes in those sub-packages, and the subroutines in those

classes.

Sri GCSR College:Rajam Page 80

Benefits:

1. The classes contained in the packages of other

programs can be easily reused.

2. In packages, classes can be unique. Two

classes in two different packages can have the

same name.

3. Packages provide a way to hide classes.

4. Packages also provide a way for separating

“design” from coding. First we can design

classes and then we can develop the java code.

44. Explain different types of packages in JAVA.

Java packages are classified into two types: They are:

 1. Java API (Application Programming Interface) Packages

 2. User defined Packages.

1. Java Application Programming Interface (API) Packages:

 An API is a set of methods and classes that provides an interface for the users. Java API

provides a large number of classes grouped into different packages according to functionality.

The packages are organized in a hierarchical structure.

Some of the Most commonly used Java API packages are:

A. java.lang:

 Package that contains essential Java classes, including numerics, strings, objects,

compiler, runtime, security, and threads. This is the only package that is automatically imported

into every Java program.

B. java.io:

 Package that provides classes to manage input and output streams to read data from and

write data to files, strings, and other sources.

C. java.util:

 Package that contains miscellaneous utility classes, including generic data structures, bit

sets, time, date, string manipulation, random number generation, system properties, notification,

and enumeration of data structures.

D. java.net:

 Package that provides classes for network support, including URLs, TCP sockets, UDP

sockets, IP addresses, and a binary-to-text converter.

Sri GCSR College:Rajam Page 81

E. java.awt:

 Package that provides an integrated set of classes to manage user interface components

such as windows, dialog boxes, buttons, checkboxes, lists, menus, scrollbars, and text fields.

(AWT = Abstract Window Toolkit)

F. java.awt.image:

 Package that provides classes for managing image data, including color models,

cropping, color filtering, setting pixel values, and grabbing snapshots.

G. java.awt.peer:

 Package that connects AWT components to their platform-specific implementations

(such as Motif widgets or Microsoft Windows controls).

H. java.applet:

 Package that enables the creation of applets through the Applet class. It also provides

several interfaces that connect an applet to its document and to resources for playing audio.

Using API packages:

 There are two ways to access classes stored in a package. They are:

1. The first approach: This approach uses the fully qualified class name. The fully qualified

class name consists of java package name and class name separated by dots representing

different levels.

Process:

 Use the package name in which the required class is contained.

 Use the class name in which required method in contained.

Syn: java.package name.classname;

Ex: java.awt.Color;

In the above example awt is the package of java package and color is the class of awt

package.

2. The second approach:

 This approach uses the import statement. This statement must be written at the top of the

program. It consists of import keyword, package name and class name along with dot operator.

Process:

 Use the import keyword.

 Use the package name in which the required class is contained.

 Use the class name in which required method in contained.

Syn: import java.package name.classname;

java

awt

color

Sri GCSR College:Rajam Page 82

Ex1: import java.awt.Color;

 This statement imports the class color into the program.

Ex2: import java.awt.*;

 This statement imports all classes of java.awt package into the program.

Naming convention for packages in JAVA:

 Packages can be named using the standard java naming rules.

1. All package names begin with lower case letters.

2. All class names begin with upper case letters.

3. All methods begin with lower case letters.

 Syn: java.package_name.class_name.method_name;

 Ex: java.lang.Math.sqrt(x);

45. Explain how to create and use User defined packages in JAVA:

 Packages that are designed and created by the user are called user defined packages.

Creating a package:

 To create a package, we must first declare a package using the package keyword. Then

we must define a class in it.

Declaring a package:

Syn: package package_name;

 public class class_name

 {

 ………………….. body …………………..

 }

Ex: package student;

public class sum

 {

public int add(int x, int y)

{

 return(x + y);

}

 }

 }

Sri GCSR College:Rajam Page 83

Steps for creating packages:

1. Decide the name of the package.

2. Create a subdirectory with this name under the directory where main source files are

stored.

3. Declare the package at the beginning of a file using the following syntax

package packagename;

4. The name of the subdirectory must be the same name of the package exactly.

5. Define the class that is to be put in the package and declare it public.

package arithmetic

public class Addition

{

public int sum(int x,int y)

{ return(x+y); } }

6. Save the source file by class name Addition.java

7. Switch to the subdirectory created earlier and compile the source file. When completed,

the package would contain Addition.class files of the source file.

 Remember that the .class file must be located in a directory that has the same

name as the package

 Java also supports the concept of package hierarchy. This is done by specifying

multiple names in a package statement, separated by dots.

 Ex: package firstPackage.secondPackage;

Using or accessing a Package:

 The import statement is used to use a package. The general form of using a package is:

 Syn: import package_name.classname;

 Ex: import arithmetic.Addition;

Here arithmetic is the name of the package and Addition is the name of the class in it.

import arithmetic.Addition;

class PackageEx

{

public static void main(String args[])

{

Sri GCSR College:Rajam Page 84

Addition s = new Addition ();

int n=s.sum(5,6);

System.out.println(“Sum=”+n);

}

}

Adding a class to a package:

 We also can add new class to the packages. Suppose we want to add another class Sub to

arithmetic package. Then follow these steps:

1. Define the class and make it public.

2. Place the package statement before the class definition as follows:

package arithmetic;

public class Subtract

{

public int sub(int x, int y)

{

return(x-y);

}

 }

3. Store this as Subtract.java file under the directory arithmetic.

4. Compile Subtract.java file. This will create a Subtract.class file and place it in the

directory arithmetic.

5. Now the package arithmetic will contain both the classes Addition and Subract.

6. Statement like import arithmetic.* can import the definitions of classes Addition and

Subtract into the program.

Hiding classes:

When we import package using asterisk (*), all public classes are imported. If we want to

hide a particular class we must not use the class access specifier as public in the class definition.

 In the below example the package Mypack contains two class first class is public class

and the other class second is not a public so it is hidden from other classes.

 The statement import Mypack.*; will import only the definition of class first but not

class second as it is hidden.

Sri GCSR College:Rajam Page 85

 Ex:

3. Static import:

 Static import is another feature eliminates the need of qualifying a static member with the

class name. The static import declaration is similar to that of import. We can use the import

statement to import class from packages and use them without qualifying the package. Similarly,

we can use the static import statement to import static members from classes and use them

without qualifying the class name.

Syn: import static package_name.class_name.staticmember_name;

import static java.lang.Math.*;

public class Mathop

{

public void circle(double r)

{

double area = PI * r * r;

System.out.println(“Area=” + area);

}

public static void main(String args[])

{

Mathop obj = new Mathop();

obj.circle(2,3);

}

}

Example: Java program for creating an arithmetic package.

 package name: arithmetic

package Mypack;

public class first // public

{

body of X;

}

class second // hidden

{

body of Y

}

Sri GCSR College:Rajam Page 86

 class names: Sum.java

 Subtract.java

 Mulitply.java

 Divide.java

Sum.java:-

package arithmatic;

public class Sum

{

int x,y,z;

public Sum(int a,int b)

{

x=a;

y=b;

}

public void caliculatesum()

{

z=x+y;

 System.out.println("the sum is "+z);

}

}

Subtract.java:-

package arithmatic;

public class Subtract

{

int x,y,z;

public Subtract(int a,int b)

{

x=a;

y=b;

}

public void caliculatesub()

{

Sri GCSR College:Rajam Page 87

z=x-y;

System.out.println("thesubtraction value is "+z);

}

}

Mulitply.java:-

package arithmatic;

public class Multiply

{

int x,y,z;

public Multiply(int a,int b)

{

x=a;

y=b;

}

public void caliculatemul()

{

z=x*y;

System.out.println("the multiplied result is "+z);

}

}

Divide.java:-

package arithmatic;

public class Divide

{

int x,y,z;

public Divide(int a,int b)

{

x=a;

y=b;

}

public void caliculatediv()

{

Sri GCSR College:Rajam Page 88

z=x/y;

System.out.println("the division result is "+z);

}

}

The above sum.java

 subtract.java

 multiply.java

 divide.java

 are stored in a directory (name) arithmetic. Why because the package name is arithmetic

and complile individually. so compiler creates .class files.

The above classes are imported into Packdemo.java program.

Packdemo.java:-

import arithmatic.Sum;

import arithmatic.Subtract;

import arithmatic.Mulitply;

import arithmatic.Divide;

class Packdemo

{

public static void main(String args[])

{

Sum s=new Sum(25,35);

s.caliculate();

Subtract u=new Subtract();

u.caliculate();

Mulitply m=new Mulitply();

m.caliculte();

Divide d=new Divide();

d.caliculate();

}

}

Sri GCSR College:Rajam Page 89

EXCEPTION HANDLING

46. WHAT IS EXCEPTION HANDLING? EXPLAIN ITS TYPES.

Errors in Programming:

 An error may produce incorrect output or terminate the program execution.It is therefore

important to detect and manage properly all the possible error condition in the program.

 Errors may classified into 2 types. 1) Compile time errors.

 2) Runtime Errors.

COMPILE TIME ERRORS:-

 All the syntactical errors will be detect and display by the java compiler. These errors are

known as compile time errors. Whenever the compiler displays an error, it will not create the

.class file. It is therefore necessary that we fix all the errors before we can successfully compile

and run the program. Java compiler does a nice job of telling us where the errors are in the

program. Most of the compile-time errors are due to typing mistakes.

 The most common problems are.

 Missing semicolon at the end of any statement.

 Missing class or method brackets.

 Missing spellings of identifiers and keywords.

 Use of undeclared variables.

 Bad reference to object.

 Use of = in the place of = = operator.

Ex: Class CompileError

 Missing class brackets

 Public static void main(String args[] missing method brackets.

 {

int a=10,b=20 missing semicolon

 c=a/b; undeclared variable c

System.out.println(“the sum is”+c);

 }

 }

RUNTIME ERRORS:-

 Some times a program may compile successfully then java compiler creates “.class file”.

But may not run properly such programs may produce incorrect result due to wrong logic or may

terminate program due to errors such errors are runtime errors.

Sri GCSR College:Rajam Page 90

Some common types of run time errors are.

 Dividing an integer by Zero.

 Accessing an element that is out of the bounds of an array.

 Passing a parameter that is not in a valid type.

 When such type of errors encounter then java default exception handler display an

exception type.

Ex:- Class RuntimeError

 {

 Public static void main(String args[])

 {

 Int a=10,b=0,c;

 C=a/b; Division by zero (b=0) condition;

 System.out.println(“the result is”+c);

 }

 }

 47. How to handle Exceptions in JAVA.

 An exception is an event that occurs during the execution of a program that disrupts the

normal flow of instructions. When an error occurs within a method, the method creates an object

called an exception object, contains information about the error, including its type and the state

of the program. Creating an exception object and handing it to the runtime system is called

throwing an exception.

 If the exception object is not caught and handled properly, the interpreter will display an

error message and will terminate the program. If we want the program to continue with execution

of the remaining code, then we should try to catch the exception object thrown by the error

condition and then display an appropriate message for taking corrective actions. This task is

known an Exception handling.

 The Exception Handling mechanism performs the following task:

 Find the problem (Hit the Exception-try)

 Inform that an error has occur(Throw the exception)

 Receive that error information(catch the exception)

 Take creative action (Handle the exception)

The exception handling code basically consist of two segments.

 To detect errors and throw that exception.

Sri GCSR College:Rajam Page 91

 To catch exception and to take appropriate action

We can implement java Exception Handling by using the keywords: try, catch, throw,

throws, finally

Syntax of Exception Handling Code:

 The basic concepts of exception handling are throwing an exception and catching it.

try

{

 Statements; // generate an exception

}

 catch (Exception-Type e)

{

 Statement; // process the exception

}

Java uses a keyword try to preface a block of code that is likely to cause an error

condition and throw an exception. A catch block defined by the keyword catch catches the

exception thrown by thee try block and handles it appropriately. The catch block is added

immediately after the try block.

Some common exception types are:

 Exception type Description

ArithmeticException Caused by mathematical errors such as Division By zero

ArrayIndexOutOfBoundsException Caused by bad array index.

ArrayStoreException Caused by when a program try to store the wrong type of

data in an array

FileNotFoundException Caused by it is an attempting to cause an non existing file

I/OException Causedby general input/output failures.

Try keyword:-

 The try block can have one or more statements that could generates an exception. If

anyone statement generates an exception the remaining statements in the try block are skipped

and execution jumps to the catch block that is placed to the next of try block.

 Catch keyword:-

 A try block to be followed by at least one catch block. Each catch block is like a little

method that makes one and only one argument of a particular exception type.

Sri GCSR College:Rajam Page 92

Ex: Write a java program to handle arithmetic Exception

import java.util.*;

class Arithmetic

{

public static void main(String args[])

{

int a,b,c;

Scanner s=new Scanner(System.in);

a=s.nextInt();

b=s.nextInt();

try

{

c=a/b; //causes error due division by zero

System.out.println("the remainder is "+c);

}

catch(ArithmeticException ae)

{

System.out.println("you are given ramainder value zero.");

}

}

}

Finally:

 java supports another exception handling statement known as finally. That can be used to

handle an exception that is not caught by any of the previous catch statement. That means finally

block can be used to handle any type of exception generated within try block.

 The finally block is executed regardless of whether or not an exception is thrown.

try { }

catch() { }

finally { }

Sri GCSR College:Rajam Page 93

Ex: Write a java program by using finally keywoard.

import java.util.*;

class Arithmatic

{

public static void main(String args[])

{

int a,b,c;

Scanner s=new Scanner(System.in);

a=s.nextInt();

b=s.nextInt();

try

{

c=a/b; //causes error due division by zero

System.out.println("the remainder is "+c);

}

catch(ArithmeticException ae)

{

System.out.println("you are given ramainder value zero.so division by zero exception is raised");

}

finally

{

System.out.println("this is final block statements and executed at last ");

}

}

}

 While you are using the throw keyword the flow of execution stop immediately after the

throws statement the remaining sub statements inside the try block after the throw keyword are

not executed.

Ex: Write a java program to handle the user defined exception (marks out of bounds Exception)

Throws:

 Throws is a keyword used in a method definition to declare exception to be thrown. So

we need not consider about the try,catch,finally blocks

Sri GCSR College:Rajam Page 94

Syntax:

 Void methodname() throws Exception type

 {

 Statements

 }

Ex:

Throwing our own exceptions:

 We can throw our own exceptions using the keyword throw as follows:

 throw new throwable_subclass;

Example: throw new ArithmeticException();

import java.io.*;

import java.lang.Exception;

class MyException extends Exception

{

MyException(String message)

{

 Super(message);

}

}

Class TestMyException

{

 public static void main(String args[])throws Exception

{

 InputStreamReader instr= new InputStreamReader(System.in);

BufferedReader br=new Buffered(instr);

int m;

System.out.println(:Enter marks:”);

 try

{

 m=Integer.parseInt(br.readLine());

If(m<0 || m>100)

{

 Throw new MyException(“Invalid Marks!”); } }

Sri GCSR College:Rajam Page 95

UNIT – IV

Streams: Stream, Creating a File using FileOutputStream, Reading Data from a File

uingFileInputStream, Creating a File using FileWriter, Reading a File using FileReader, Zipping

and Unzipping Files, Serialization of Objects, Counting Number of Characters in a File, File

Copy, File Class Threads: Single Tasking, Multi Tasking, Uses of Threads, Creating a Thread

and Running it, Terminating the Thread, Single Tasking Using a Thread, Multi Tasking Using

Threads, Multiple Threads Acting on Single Object, Thread Class Methods, Deadlock of

Threads, Thread Communication, Thread Priorities, thread Group, Daemon Threads,

Applications of Threads, Thread Life Cycle

48. What is file? Explain different file handling methods in JAVA.

Java uses variables and arrays to store data inside the program due to this.

 The data is lost when the program terminates or a variable goes out of the scope i.e,

Here storage is temporary.

 It is difficult when data is large.

So we can overcome this problem by storing data in secondary storage devices in two ways.

1. By using files

2. By using databases.

 Files are used for long term storage of large amounts of data, even after the program that

created the data terminates. But in files data can be manipulated by un authorized users. Files

concept never provides security. Hence it is not recommended.

 Data base provides more security by giving username and passwords. So majority of

them will use database concept.

File:- A File is a collection of related records placed in a specific area on the disk. Data that is

stored in files is often called persistent data. A record is a collection of several fields and the

field is a collection of characters. Each character in a computer character set is represented as a

pattern of 1’s and 0’s.

 Creation, Updating, Managing data etc., using file is known as ‘File Processing’.

 To deal with files we must use some predefined classes and interfaces which contains in

java.io.package.

 We have to import java.io.*;

File Class: - java.io. package supports for Input & Output operations on files. This package

provides a class known as File Class to creating Files. File Object is used to manipulate or obtain

the information associated with a disk file, such as permission, data, directory path and soon.

 The following constructors are used to create a File Object.

Sri GCSR College:Rajam Page 96

File(String directorypath)

File(String directorypath,String filename)

File(File object,String filename)

 Methods: -

 1. boolean canRead()

2. boolean canWrite()

3. boolean exists()

4. String getName()

5. String getParent()

6. String getPath()

7. boolean isDirecotry()

8. boolean isFile()

9. long length()

10. long lastModified()

11. boolean isHidden()

12. String getAbsolutePath()

13. boolean isAbsolute()

14. String []list()

Ex: Write a java program by using all file handling methods

import java.io.*;

class FileDemo

{

public static void main(String arg[])

{

File f=new File(“D:/giri/hai.java”);

System.out.println(f.canRead()); //true

System.out.println(f.canWrite()); //true

System.out.println(f.exists()); //true

System.out.println(f.getName()); //hai.java

System.out.println(f.getParent()); //D:\giri

System.out.println(f.getPath());

//D:\giri\hai.java

System.out.println(f.isDirectory()); //false

System.out.println(f.isFile()); //true

Sri GCSR College:Rajam Page 97

System.out.println(f.length()); //210

System.out.println(f.lastModified()); //1165345688000

System.out.println(f.isHidden()); //false

System.out.println(f.getAbsolutePath()); //D:\giri\hai.java

System.out.println(f.isAbsolute()); //true

}

}

Ex: Write a program to display all files in the given directory

import java.io.*;

class All

{

public static void main(String arg[])

{

File f=new File(“D:/ramesh”);

String str[]=null;

if(f.isDirectory())

str=f.list();

for(int i=0;i<str.length;i++)

System.out.println(str[i]);

}

}

49. What is Stream? Explain different stream objects used by JAVA.

 A stream is path traveled by data in program. An input stream sends data from a source

into a program, and an output stream sends data out of a program to a destination.

When a file is opened, an object is

created and a stream is associated with the

object. Three stream objects are created by the

java system automatically when the program

execution begins.

 They are 1. System.in

 2. System.out

 3. System.err

System.in: It is a standard input stream object. It enables a program to input bytes from the

keyboard

Sri GCSR College:Rajam Page 98

System.out: It is a standard output stream object. It enables a program to output data to the

screen.

System.err: It is a standard error stream object, It enables a program to output error message to

the screen.

I/O Stream Hierarchy:

Java 2 defines two types of Streams called

Byte Streams and Character Streams

1. Byte Streams: It carry integer values

that range from 0 to 255. All the types of

data can be expressed in a byte format,

including numerical data, executable

programs, Internet communication and

the byte code produced by Java Virtual

Machine.

2. Character Streams: Character streams are a specialized type of byte stream that only

handles textual data. They are distinguished from byte streams because Java’s character

set supports Unicode, a standard that includes many more characters(0 to 65,535)

The character and byte streams are all sequential access streams; that is, they can read a file from

a point to point, say start to finish.

50. Explain different file streams in JAVA.

FileInputStream:- File Input Stream is derived from Input Stream and used to read bytes of

data from a file.

Constructors of FileInputStream are

 FileInputStream(String filepath)

 FileInputStream(File fileobj)

 Here, filepath is the full path name of the file.

 Fileobj is a File object that describes the file.

FileOutputStream:- FileOutputStream is derived from OutputStream and used to send bytes of

data into a file.

Constructors of FileOutputStream are

 FileOutputStream(String filepath)

 FileOutputStream(File fileobj)

 FileOutputStream(String filepath, boolean append)

 Here, filepath is the full path name of the file

Sri GCSR College:Rajam Page 99

 Fileobj is a File object that describes the file

 If append is true, then the file is in append mode

Reading from a file and writing to a file using Input/Output byte streams.

import java.io.*;

public class f1

{

public static void main(String arg[])

{

try

{

FileInputStream fis=new FileInputStream("New.java");

FileOutputStream fos=new FileOutputStream("abc.txt");

int k;

while((k=fis.read())!=-1)

fos.write(k);

fos.close();

fis.close();

}

catch(IOException e)

{

System.out.println("An error occurred in IO Operation "+e);

}

}

}

The above program can be rewritten with Reader/Writer classes. Just replace FileInputStream

with FileReader and FileOutputStream with FileWriter

import java.io.*;

public class f1

{

public static void main(String arg[])

{

try

{

FileReader fr=new FileReader("New.java");

Sri GCSR College:Rajam Page 100

FileWriter fw=new FileWriter("ab.txt");

int k;

while((k=fr.read())!=-1)

fw.write(k);

fr.close();

fw.close();

}

catch(IOException e)

{

System.out.println("An error occurred in IO Operation "+e);

}

}

}

51. Explain about Character Streams in JAVA.

 Character Stream classes are used for processing the data in the form of characters. This

class defines two important abstract classes called Reader and Writer.

Reader: - It is an abstract class that defines Java’s model of streaming character input. The

system is reading the data in the form of characters from the physical device using Reader. The

methods that are provided by the Reader class are

a) void close(): Closes the input source. Further read attempts will generate an

IOException.

b) int read(): Returns an integer representation of the next available character for the

invoking stream. -1 is returned when the end of the is encountered.

c) int read(char buf[]): Attempts to read up to buf.length characters into buffer and returns

the actual number of characters that were successfully read. -1 is returned when the end of file is

encountered.

d) int read(char buf[],int off, int num): Attempts to read up to num characters into buffer

starting at buffer[off], returning the number of characters successfully read. -1 is returned when

the end of file is encountered.

e) long skip(long numchars): Skips over numchars characters of input, returning the number

of characters actually skipped.

Writer: - It is an abstract class that defines java’s model of streaming character output. The

system is sending the data in the form of characters to the physical device using Writer. The

methods that are provided by the Writer class are

Sri GCSR College:Rajam Page 101

a) void close(): Closes the output stream. Further write attempts will generate an

IOException

b) void write(int ch): Writes a single character to the invoking output stream

c) void write(char buf[]): Writes a complete array of characters

import java.io.*;

public class ww

{

public static void main(String arg[]) throws IOException

{

DataInputStream dis=new DataInputStream(System.in);

System.out.print("enter first number ");

String str=dis.readLine();

int fn=Integer.parseInt(str);

System.out.print("enter seconf number ");

str=dis.readLine();

double sn=Double.parseDouble(str);

System.out.println("You entered: "+fn+"and"+sn);

System.out.println("Their sum is "+(fn+sn));

dis.close();

}

}

Threads In JAVA
52. Explain about multitasking in JAVA.

 The ability to execute several programs simultaneously is known as Multi tasking. They

are two types of Multi tasking.

 Process based Multi tasking

 Thread based Multi tasking

Process based Multi tasking : -

 A process is a program that is executing. A process based multitasking is a feature that

allows a computer to run 2 or more programs simultaneously.

 Eg:- It enables to run the java complier at the same time that you are using notepad.

Thread based Multi tasking :-

 A thread is a small part of a program that has a single flow of control. A thread based

multi tasking is a single program that can perform 2 or more tasks simultaneously.

 Eg:- In MS Word at the time of entering the data the spelling and grammar facility can

check the data at the same time.

Sri GCSR College:Rajam Page 102

Difference between processing based Multi tasking and thread based Multi tasking:-

Process based Multi tasking Thread based Multi tasking

An executing program is called a process. A thread is a small part of a process.

Every process has its separate address space. All the threads of a process share the same

address space cooperatively as that of a

process.

In process based multitasking a process or a

program is the smallest unit.

In thread based multitasking a thread is the

smallest unit.

In process based multitasking two or more

processes and programs can be run

concurrently.

In thread based multitasking two or more

threads can be run concurrently.

Process based multitasking requires more

overhead.

Thread based multitasking requires less

overhead.

Process to Process communication is expensive

and limited.

Communication between two threads is less

expensive as compared to process.

Context switching from one process to another

process is expensive.

Context switching from one thread to another

thread is less expensive as compared to

process.

Process are also called heavyweight task. Thread are also called lightweight task.

It has slower data rate multi-tasking.

It has faster data rate multi-tasking.

Process-based multitasking is not under the

control of Java.

Thread-based multitasking is under the control

of Java.

53. What is Thread? Explain its types.

Any application can have multiple processes (instances). Each of this process can be

assigned either as a single thread or multiple threads.

What is Single Thread?

 A single thread is basically a lightweight and the smallest unit of processing. Java uses

threads by using a "Thread Class".

 There are two types of thread – user thread and daemon thread

 When an application first begins, user thread is created. Post that, we can create many

user threads and daemon threads. Demon threads are used when we want to clean the application

and are used in the background.

Single Thread Example:

public class SingleThreadEx

{

 public static void main(String args[])

 {

 System.out.println("Single Thread example");

 }

}

Advantages of single thread:

 Reduces overhead in the application as single thread execute in the system Also, it

reduces the maintenance cost of the application.

Sri GCSR College:Rajam Page 103

Multithreading:-

 A thread is similar to a program that has a single flow of control. A unique property of

java is its support for multithreading. Java enables us to use multiple flows of control in

developing programs. Each flow of control may be thought of as a separate tiny program known

as a thread that runs in parallel to others. A program that contains multiple flows of control

known as Multithreaded Program.

 The main purpose of multithreading is to provide simultaneous execution of two or more

parts of a program to maximum utilize the CPU time. A multithreaded program contains two or

more parts that can run concurrently.

 Hence it is also known as Concurrency in Java. Each such part of a program called

thread. This multitasking is done, when multiple processes share common resources like CPU,

memory, etc.

 Each thread runs parallel to each other. Threads don't

allocate separate memory area. Hence it saves memory. Also,

context switching between threads takes less time.

1. Multithreading is a powerful programming tool that makes

java distinctly different from other programming language.

2. It enables programmers to do multiple things at one time.

3. They can divide a long program into threads and execute

them in parallel.

4. Threads are extensively used in java-enabled browsers such

HotJava.

Example of Multi thread:

public class MultiThreadEx implements Runnable

 {

 public static void main(String[] args)

 {

 Thread MultiThreadEx1 = new Thread("Giri");

 Thread MultiThreadEx2 = new Thread("Babu");

 MultiThreadEx1.start();

 MultiThreadEx2.start();

 System.out.println("Thread names are following:");

 System.out.println(MultiThreadEx1.getName());

 System.out.println(MultiThreadEx2.getName());

 }

 @Override

 public void run()

 {

 }

 }

Advantages of multithread:

 The users are not blocked because threads are independent, and we can perform multiple

operations at times

 As such the threads are independent, the other threads won't get affected if one thread

meets an exception.

54. Explain the Life Cycle Of A Thread.

 During the life of a thread, there are many states it can enter.

start start start

Main Thread

Thread A Thread B Thread C

S
w

itc
hi

ng

S
w

itc
hi

ng

Multi Threaded Programming

start start start

Main Thread

Thread A Thread B Thread C

S
w

itc
hi

ng

S
w

itc
hi

ng

Multi Threaded Programming

Sri GCSR College:Rajam Page 104

They are:

1. Newborn state.

2. Runnable state

3. Running state.

4. Blocked state.

5. Dead state.

New born state:-

 In this phase, the thread is created using class "Thread

class". When we create a thread object the thread is born and is

said to be New born state. The thread is not at all schedule for

running at that state we can so any of the following things.

1. Schedule it for running using start method

2. Kill it using stop method.

Runnable state:-

 The runnable state states that the thread is ready for execution and is waiting for the

availability of the processor. That is the runnable thread has join in the queue of the threads are

waiting for execution. If all threads have equal priority then they are executed in round robins

fashion (first-come, first-serve manner). This process of assigning time to threads is known as

time-slicing.

 Yield means that the current thread is willing to give for another thread.

Running state: -

 Running means that the processor has given its time

to the thread for its execution the thread runs until it out of

control on its own or it is pointed by a high priority thread.

When the thread starts executing, then the state is changed to

"running" state. The scheduler selects one thread from the thread pool, and it

starts executing in the application.

 The running thread break its control is one of the

following situations.

a. It has been using suspended by using suspend

() method and can retrieve by using resume ()

method.

b. The thread has been made of sleep when the

time period of using a method sleep (time) is

out and again reenters the runnable state has

this time period is elapsed.

c. It has been told to wait until some events occur this is done by using the wait ()

method. The thread can be again go to runnable state when it call notify ()

method.

Newborn

Runnable

state

Dead

State

StopStart

Scheduling a newborn thread

Newborn

Runnable

state

Dead

State

StopStart

Scheduling a newborn thread

Running

Thread
Runnable Threads

yield

Relinquishing control using yield() method

Running

Thread
Runnable Threads

yield

Relinquishing control using yield() method

Running

Thread
Runnable

suspend

Suspended

resume

Relinquishing control using suspend() method

Running

Thread
Runnable

suspend

Suspended

resume

Relinquishing control using suspend() method

Running

Thread
Runnable

Sleep(t)

Sleeping

After(t)

Relinquishing control using sleep() method

Running

Thread
Runnable

Sleep(t)

After(t)

Relinquishing control using sleep() method

Running

Thread
Runnable

Sleep(t)

Sleeping

After(t)

Relinquishing control using sleep() method

Running

Thread
Runnable

Sleep(t)

After(t)

Relinquishing control using sleep() method

Running

Thread
Runnable

wait

waiting

notify

Relinquishing control using wait() method

Running

Thread
Runnable

wait

waiting

notify

Relinquishing control using wait() method

Sri GCSR College:Rajam Page 105

Blocked State:-

 A thread is said to be a blocked state when it is prevented entering to the runnable state

and subsequently running state. This happens when the thread is suspended or waiting or

sleeping in order to satisfy certain requirements. A blocked thread is consider not runnable but

not dead and there for the qualified to run again.

Dead State:-

 This is the state when the thread is terminated. Every thread has a life cycle a thread ends

its life when it has completed its run method Or however we can kill it by sending this stop()

method.

55. How to create Threads in JAVA?
 Threads are implemented in the form of objects that contain a method called run(). The

run() method is the heart and soul of any thread. It makes up the entire body of a thread and is

the only method in which the thread’s behavior can be implemented.

public void run()

{

Statements for thread

}

The run() method should be invoked by an object of the concerned thread. This can be

achieved by creating the thread and initiating it with the help of another thread method called

start().

A new thread can be created in two ways:

i. By using extending the thread class.:

 Define a class that extends Thread class and override its run() method with the

code required by the thread.

ii. By using implementing Runnable interface:

 Define a class that implements Runnable interface. The Runnable interface has

only one method, run() that is to be defined in the method with the code to be

executed by the thread.

1. Extending the thread class:

 We can make our class runnable as thread by extending the class java.lang.Thread. This

gives us access to all thread methods directly.

1. Declare the class as extending the Thread class.

Class MyThread extends Thread

{

.

}

2. Implement the run() method that is responsible for executing the sequence of code that

the thread will execute.

public void run ()

{

.

}

3. Create a thread object and call the start() method to initiate the thread execution.

 classname objectname=new classname();

 Objectname.start(); // invoking run() method

Ex Program:

Write a java program to create 3 threads. Even, Odd, Natural numbers up to 20

numbers.

Sri GCSR College:Rajam Page 106

Multithread.java:

class Even extends Thread

 {

public void run()

 {

 for(int i=2;i<=20;i+=2)

 {

 System.out.println("even number"+i);

 }

 }

}

class Odd extends Thread

 {

public void run()

 {

 for(int i=1;i<=20;i+=2)

 {

 System.out.println("odd number"+i);

 }

 }

}

class Natural extends Thread

 {

public void run()

 {

 for(int i=1;i<=20;i++)

 {

 System.out.println("natural number"+i);

 }

 }

}

class Multithread

 {

public static void main(String args[])

 {

Even e=new Even();

Odd o=new Odd();

Natural n=new Natural();

e.start();

o.start();

n.start();

} }

 Note that the output from the threads is not sequential. They do not follow any specific

order. They are running independently of one another and each executes whenever it has a

chance.

56. How to implement threads using Runnable Interface:-
 We can implement thread programs using Runnable interface contains all the methods of

the threads start(),strop(),run() without body implementation.

Sri GCSR College:Rajam Page 107

 We have to implement these methods in our class to implement a thread class using

Runnable interface.

 It includes the following steps.

1. Implement our classes using Runnable interface.

 class classname implements Runnable

 {

 Statements;

 }

2. Provide body to the run() method.

 public void run()

 {

 Statements;

 }

3. Create an object of our class that must be instantiated with thread class. So create a

thread object and pass that object to the thread class constructor.

 class name objectname = new classname();

4. Then call the start method using thread object.

 thread object name.start();

Ex Program: Write a java program to create threads using Runnable interface.

 Runnablethread.java:

 import java.lang.Thread;

class X implements Runnable // Step 1

{

public void run() // Step 2

{

for(int i=1;i<=10;i++)

{

System.out.println(“Thread X: i=” + i);

}

System.out.println(“Exit from X”);

}

}

Class Runnablethread

{

public static void main(String args[])

{

X r=new X();

Thread threadX=new Thread(r); // Step 3

threadX.start(); // Step 4

System.out.println(“End of the main thread”);

}

}

57. Explain about Thread Priority JAVA.
 In Java each thread is assigned a priority, which affects the order in which it is scheduled

for running. The threads of the same priority are given equal treatment by the Java scheduler and

therefore, they share the processor on a first-come, first-serve basis.

 Java permits us to the priority of a thread using the setPriority() method as follows:

 ThreadName.setPriority(intNumber)

Sri GCSR College:Rajam Page 108

 The intNumber is an integer value to which the thread’s priority is set. The Thread class

defines several priority constants:

 MIN_PRIORITY = 1

 NORM_PRIORITY = 5

 MAX_PRIORITY = 10

 The intNumber may assume one of these constants or any value between 1 to 10. Note

that the default setting is NORM_PRIORITY.

 Whenever multiple threads are ready for execution, the Java system chooses the highest

priority thread and executes it.

 It stops running at the end of run().

 It is made to sleep using sleep().

 It is told to wait using wait().

Ex Program: Write a java program to create threads using Various Thread Priorities.

class A extends Thread

{

public void run()

{

System.out.println(“A started”);

for(int i=1;i<5;i++)

{

System.out.println(“Thread A: i=” + i);

}

System.out.println(“Exit from A”);

}

}

class B extends Thread

{

public void run()

{

System.out.println(“B started”);

for(int j=1;j<5;j++)

{

System.out.println(“Thread B: j=” + j);

}

System.out.println(“Exit from B”);

}

}

class C extends Thread

{

public void run()

{

System.out.println(“C started”);

for(int k=1;k<5;k++)

{

System.out.println(“Thread C: k=” + k);

}

System.out.println(“Exit from C”);

}

}

Class ThreadPriority

Sri GCSR College:Rajam Page 109

{

public static void main(String args[])

{

A tA =new A();

B tB =new B();

C tC =new C();

tA.setPriority(Thread.MIN_PRIORITY);

tB.setPriority(tA.getPriority()+1);

tC.setPriority(Thread.MAX_PRIORITY);

System.out.println(“Start thread A”);

tA.start();

System.out.println(“Start thread B”);

tB.start();

System.out.println(“Start thread C”);

tC.start();

System.out.println(“End of main thread”);

}

}

58. Explain about Thread Synchronization.

 Synchronization generally means sharing data between multiple or threads. One thread

may try to read a record from a file while another thread is still writing to the same file.

Depending on the situation, we may get strange results. Java enables us to overcome this

problem using a technique known as synchronization.

 The keyword synchronized helps to solve such problems by keeping a watch on such

locations. Key to Synchronization is the concept of monitor. A monitor is an object that is used

as a mutual exclusion clock. One thread can own monitor at a given time.

 When a thread acquires a clock it is said to enter the monitor. All other threads

attempting to enter the clocked monitor will be suspended until the first theread (running thread)

exist the monitor.

 For example, the method that will read information from a file and the method that will

update the same file may be declared as synchronized.

Example:

Synchronized void update()

{

……

}

Example: Java program for Thread Synchronization

 If you declare any method as synchronized, it is known as synchronized method.

 Synchronized method is used to lock an object for any shared resource.

 When a thread invokes a synchronized method, it automatically acquires the lock for

that object and releases it when the thread completes its task.

class Table

{

synchronized void printTable(int n)

{

//synchronized method

for(int i=1;i<=5;i++)

{

System.out.println(n*i);

Sri GCSR College:Rajam Page 110

Try

{

Thread.sleep(400);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

}

class MyThread1 extends Thread

{

Table t;

MyThread1(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(5);

}

}

class MyThread2 extends Thread

{

Table t;

MyThread2(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(100);

}

}

public class TestSynchronization2

{

public static void main(String args[])

{

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Sri GCSR College:Rajam Page 111

UNIT – V

Applets: Creating an Applet, Uses of Applets, <APPLET> tag, A Simple Applet, An Applet with

Swing Components, Animation in Applets, A Simple Game with an Applet, Applet Parameters

Java Database Connectivity: Database Servers, Database Clients, JDBC (Java Database

Connectivity), Working with Oracle Database, working with MySQL Database, Stages in a JDBC

Program, Registering the Driver, connecting to a Database, Preparing SQL Statements, Using

jdbc–odbc Bridge Driver to Connect to Oracle Database, Retrieving Data from MySQL Database,

Retrieving Data from MS Access Database, Stored Procedures and Callable Statements, Types of

Result Set

59. What is Applet? How to develop applets in JAVA.

Applet programs are small programs that are primarily used in Internet programming.

These programs are either developed in local systems or in remote systems and are executed by

either a java compatible “Web browser” or “Applet viewer”. Like any application program

applets can perform arithmetic operations, display graphics, play sounds, accept user input,

create animations etc..

 Applets can develop in two ways.

 We can write our own applets and

embed them into web pages

 We can download an applet from a

remote computer and then embed it

into a web page.

Types Of Applets:-

Applets are two types: 1) Local Applets

 2) Remote Applets

A. Local Applets:

 An applet developed locally and stored in a local system is known as a Local Applet. It

does not need to use the Internet and therefore the local system does not require the Internet

connection. It simply searches the directories in the local system and locates and loads and run

the specified applet.

B. Remote Applets:

An applet developed by someone else and stored on a remote computer is known as

Remote Applet. If our system is connected to the Internet, we download the remote applet onto

Local Applet

Loading Local Applet

Local Computer

(client)

Remote Computer

(Server)

Internet

Remote

Applet

Loading a remote Applet

Local Applet

Loading Local Applet

Local Computer

(client)

Remote Computer

(Server)

Internet

Remote

Applet

Loading a remote Applet

Sri GCSR College:Rajam Page 112

our system via the Internet and run it. In order to locate the remote applet, we must know the

applet’s address on the Web. This address is known as Uniform Resource Locator (URL) and

must be specified in the applet’s HTML document as the value of the CODEBASE attribute.

60. How Applets Differ From Applications?

 Both applets and stand-alone applications are java programs. There is significant

difference between them. Applets are not full-featured application programs.

a. Applets do not use the main() method for initiating the execution of the code. Applets,

when loaded, automatically call certain methods of Applet class to start and execute the

applet code.

b. Unlike Stand-applications, applets cannot be run independently. They are run from inside

a web page using HTML tag.

c. Applets are restricted from using libraries from other languages such as C or C++.

d. Applets cannot read from or write to the files the local computer.

e. Applets cannot communicate with other server on the network.

f. Applets cannot run any program from the local computer.

Advantages of applets:

1. When we need something dynamic to be included in the display of a web page.

2. When we require some flash outputs. For example, applets that produce sounds,

animations or some special effects would be useful when display certain pages.

3. When we want to create a program and make it available on the internet foe us by other

on their computers.

Steps for developing and testing applets:

1. Building an applet code (.java file)

2. Creating an executable applet(.class file)

3. Designing a web page using HTML tags.

4. Preparing <APPLET> tag.

5. Incorporating <APPLET> tag into the web page.

6. Creating HTML file.

7. Testing the applet code.

61. How to build an applet code in JAVA (.java file)?

 It is essential that our applet code uses the services of two classes, namely Applet and

Graphics from the Java class library. The Applet class which is contained in the java.applet

package provides life and behavior of the applet through its methods such as init(), start() and

paint(). Unlike the applications, where Java calls the main() method directly to initiate the

Sri GCSR College:Rajam Page 113

execution of the program, when an applet is loaded, Java automatically calls a series of Applet

class methods for starting running and stopping the applet code. The Applet class therefore

maintains the lifecycle of an applet.

 The paint() method of the applet class, when it is called, actually displays the result of

the applet code on the screen. The output may be text, graphics or sound. The paint() method,

which requires a Graphics objects as an argument,

public void paint(Graphics g)

 This requires that the applet code imports the java.awt package that contains the Graphics

class. All output operations of an applet are performed using the methods defined in the Graphics

class.

import java.awt.*;

import java.applet.*;

Public class appletclassname extends Applet

{

 Public void paint(Graphs g)

{

 . . . // Applet operations code

}

 . . .

. . .

}

 The appletclassname is the main class for the applet. When the applet is loaded, Java

creates an instance of this class, and then a series of Applet class methods are called on that

instance to execute the code.

Import java.awt.*;

Import java.applet.*;

Public class HelloJava extends Applet

{

Public void paint(Graphs g)

{

g.drawSring(“Hello Giribabu”, 10,100);

}

}

Sri GCSR College:Rajam Page 114

62. Explain the Life Cycle Of An Applet.

The life cycle of an applet can be specified by 4 states.

 Born state – init()

 Running state – start()

 Idle state – stop()

 Dead state – destroy()

Initialized state:[init() method]

 The life cycle of an applet is begin on that time when the applet is first loaded into the

browser and called the init() method. The init() method is called only one time in the life cycle

on an applet. After the initialization of the init() method user can interact with the Applet and

mostly applet contains the init() method

 The init() method is basically called to read the PARAM tag in the html file.

 Initialization of variables and

 Initialization of the objects like image, sound file.

 Syn: public void init()

 {

 Statements;

 }

Running State: [Start () method]:

 The start method of an applet is called automatically after the initialization method init().

This method may be called multiples time when the Applet needs to be started or restarted.

 For Example if the user wants to return to the Applet, in this situation the start Method()

of an Applet will be called by the web browser and the user will be back on the applet.

Syn: public void start()

 {

 Statements;

 }

Idle State:[Stop () method]:

 An applet becomes idle when it is stopped from running. Stopping occurs automatically

when we leave the page containing the currently running applet. We can also do by calling The

stop() method.

Sri GCSR College:Rajam Page 115

 There is only miner difference between the start() method and stop () method. the stop()

method is called by the web browser when the user leaves one applet to go another applet and the

start() method is called when the user wants to go back into the first program or Applet.

 Syn: public void stop()

 {

 Statements;

 }

Dead State:[destroy() method]:

 An applet is said to be dead when it is removed from memory. This occurs automatically

by invoking the destroy () method when we quit the browser. Like initialization, destroying

stage occurs only once in the applet’s life cycle. If the applet has created any resources, like

threads, we may override the destroy () method to clean up these resources.

Public void destroy()

{

}

Display State:[paint() method]: Applet moves to the display state whenever it has to perform

some output operations on the screen. This happens immediately after the applet enters into the

running state. Almost every applet will have a paint() method. Like other methods in the life

cycle, the default version of paint() method does absolutely nothing.

 Syn: public void paint(Graphics g)

{

Display statements;

}

Preparing The Applets:

 Before writing and executing applets into our system either java Applet viewer or a java-

enabled web browser must be properly installed.

 The following steps involved in developing applets.

 Building an applet code (.java file)

 Creating an executable applet (.class file)

 Designing a web page using HTML tags.

 Preparing < APPLET > tag and incorporate into the web page.

 Creating HTML file.

Sri GCSR College:Rajam Page 116

 Testing and Executing the Applet code by Applet Viewer or Java Enabled Web

browser.

63. How to create and Execute Applets in JAVA?

All applets are subclasses of Applet. All applets must import java.applet; and import

java.awt;

Applet package provides all necessary support for applet execution, such as starting and

stopping. It also provides methods such as init(), start(), stop(), and destroy() that load and

display images, and load and play audio clips etc. Output to your applet’s is handled with The

paint() method of the applet display the results of the applet code on the screen. The output may

be text, graphics, images, sounds etc.

 Syntax: Import java.awt.*;

Import java.applet.*;

public class myapplet extends Applet

 {

 public void init() { //initialization }

 public void start() { //start or resume execution }

 public void stop() { //suspends execution }

 public void destroy() { //shut down activity }

 public void paint(Graphics g) { //display the contents } }

 Where the Graphics class contain methods in the java.awt package perform all the

output operations.

Ex:- import java.applet.*;

 mport java.awt.*;

 public class Myapplet extends Applet

 {

 public void paint(Graphics g)

 {

 g.drawString(“hello gud mornig”, 50,50);

 }

 }

 Here drawsting() method in a Graphics class contain arguments namely output string

, X-axis position(in pixels) , Y-axis postion (in pixels),.

11. Designing a web page: A web page is basically made up of text and HTML tags that can be

interpreted by a web browser or an applet viewer. Like java source code, it can be prepared using

Sri GCSR College:Rajam Page 117

any ASCII text editor. A web page is also known as HTML page or HTML document. Web

pages are stored using a file extension .html. HTML files should be stored in the same directory

as the compiled code of the applets.

A Web page is marked by an opening HTML tag <HTML> and a closing HTML tag

</HTML> and is divided into the following three major sections:

1. Comment section (Optional)

2. Head section (Optional)

3. Body section

Comment section: It include comments that tell us what is going on the web page. A comment

line begins with a <! and ends with a >. Web browers will ignore the text enclosed between

them. Note that comments are optional and can be included anywhere in the web page.

<!

 This page includes a welcome title.....

>

Head section: The head section is defined with a starting <HEAD> tag and a closing tag

</HEAD> tag. This section usually contains a title for the web page

<HEAD>

 <TITLE> WELCOME TO JAVA </TITLE>

</HEAD>

Body section: This section contains the entire information about the webpage and its behavior.

We can set up many options to indicate how our page must appear on the screen.

<BODY>

<CENTER>

 <H1> WELCOME TO THE APPLET PROGRAMMING </H1>

</CENTER>

 <APPLET> ---------- </APPLET>

</BODY>

 Note that <CENTER> tag makes sure that the text is centered and <H1> tag causes the

text to be of the largest size. We may use other heading tags <H2> to <H6> to reduce the size of

letters in the text.

12. Creating Applet Tag:

 To run applet once an applet has been compiled, it is included in an HTML file using the

APPLET tag. let's, you must create an HTML file with the applet tag to specify the applet byte

code file, the applet viewing are dimension (width and height), and other associated parameters.

Sri GCSR College:Rajam Page 118

The syntax of the <applet> tag is:

 <applet code=classfilename.class

 width=applet_viewing_width_in_pixels

 height=aplet_viewing_height_in_pixels

 [archieve=archivefile]

 [codebase=applet_url]

 [vspace=vertical_margin]

 [hspace=horizontal_margion]

 [align=applet_alignment]

 [alt=alternative_text] >

 </applet>

The code, width, and height are required attributes; all others are optional.

 Archive: use this attribute to instruct the browser to load an archive file that contains all

the class files needed to run the applet.

 Code base: this attribute is used if your applet is located in a different directory from the

HTML page, you must specify the applet_url for the browser to load the applet. This

attribute enables you to load the class from anywhere on the internet.

 Vspace and Hspace: These two attributes specify the size of the blank margin to leave

around the applet vertically and horizontally in pixels.

 Align: This attribute specifies how the applet will be aligned in browser. One of nine

values is used : left, right, top, texttop, middle, absmiddle, baseline, bottom, and

absbottom.

 Alt: This attribute specifies the text to be displayed incase the browser cannot run java.

Ex: < applet code=”myapplet” width=200 height=300 ></ applet >

This applet tag that will run a applet called myapplet in window that is 200 pixels wide

and 60 pixels hight.

<!

. . . .

>

<HEAD>

TITLE TAG

</HEAD>

<BODY>

Applet TAG

</BODY>

Command

section

Head

section

Body

section

<!

. . . .

>

<HEAD>

TITLE TAG

</HEAD>

<BODY>

Applet TAG

</BODY>

Command

section

Head

section

Body

section

Sri GCSR College:Rajam Page 119

Example program:-

Myapplet.java

import java.applet.*;

import java.awt.*;

public class Myapplet extends Applet

{

 String str;

 public void init()

 {

 str = "This is my first applet";

 }

 public void paint(Graphics g)

 {

 g.drawString(str, 50,50);

 }

}

Sample.html

<HTML>

<BODY>

 <applet code="Myapplet" height="200" width="200"> </applet>

</BODY>

</HTML>

Executing The Applet:-

To run an applet we required one of the following tools.

a. Applet viewer is a command line program to run Java applets. It is included in

the SDK. It helps you to test an applet an applet before you run it in a browser.

b. An applet is a special type of application that's included as a part of an HTML

page and run within a web browser. Then the browser executes that code and

displays the output..

Example:- After building the program, run the applet and the applet viewer as shown below.

 When we run the applet viewer it will display the window as shown below.

Sri GCSR College:Rajam Page 120

Example-2: import java.applet.*;

import java.awt.*;

import javax.swing.*;

 /*<applet code=font1 width=400 height=400></applet>*/

public class font1 extends JApplet

{

String s1=JOptionPane.showInputDialog("enter the string ");

public void paint(Graphics g)

{

int k=12,y=50;

for(int i=0;i<s1.length();i++)

{

g.setFont(new Font("Times New Roman",Font.BOLD,k));

g.drawString(s1,125,y);

y=y+35;

k=k+5;

}

}

Output:

Sri GCSR College:Rajam Page 121

14. Passing parameters to applets:

Each Parameter is passed to applets in NAME and VALUE pairs in <PARAM> tags between the

opening and closing APPLET tags.

Syn: <param name=param_name1 value=param_value1>

 <param name=param_name2 value=param_value2>

 ……

 <param name=param_name n value=param-valuen>

Ex: <PARAM NAME = text VALUE = “Programming With Java”

1. Include appropriate <PARAM…> tags in the HTML document.

2. Provide code in the applet to parse these parameters.

 Parameters are passed on an applet when it is loaded. We can define the init() method in

the applet to get hold of the parameters defined in the <PARAM> tags. This is done using the

getParameter method of the java.applet.Applet class., which takes one string argument

representing the name of the parameter and returns a string containing the value of the that

parameter.

 To setup and handle parameters we need two things.

1) Include appropriate parameters in the html document.

2) Provide code in the applet to pass these parameters to an applet when it is

loaded.

 This code defines inside the init() method. That is done by using the getParameter()

method. This takes one string argument representing the name of the parameter and returns a

string containing the value of the parameter.

 Syn:- getParameter(“parameter name”);

 String s=getParameter(“color”);

Ex: program for taking input parameter from user.

import java.awt.*;

import java.applet.*;

public class Hello extends Applet

{

 String s;

 public void init()

 {

Sri GCSR College:Rajam Page 122

 s=getParameter("X");

 if (s==null)

 s="Java";

 s="Hello "+s;

 }

 public void paint(Graphics g)

 {

 g.drawString(s,10,100);

 }

}

Let us create HTML file that contains this applet. Web page that passes a parameter

whose NAME is string and whose VALUE is “Applet” to the applet Hello.

<HTML>

 <HEAD>

 <TITLE> WELCOME TO JAVA APPLETS </TITLE>

 </HEAD>

 <BODY>

 <APPLET CODE=Hello.class

 WIDTH=400

 HEIGHT=200>

 <PARAM NAME="X"

 VALUE="Applet!">

 </APPLET>

 </BODY>

</HTML>

Save this file as Hello.html and then run the applet using appletviewer as follows:

appletviewer Hello.html

Aligning the Display:

 We can align the output of the applet using the ALIGN attribute. This attribute can have

one of the nine LEFT, RIGHT, TOP, TEXT TOP, MIDDLE, ABSMIDDLE, BASELINE,

BOTTOM, and ABSBOTTOM.

<HTML>

<HEAD>

<TITLE> SUM OF TWO NUMBERS

Sri GCSR College:Rajam Page 123

</TITLE>

</HEAD>

<BODY>

 <APPLET CODE=Num.class WIDTH=300 HEIGHT=300 ALIGN =RIGHT>

 </APPLET>

</BODY>

</HTML>

Displaying Numerical values: We can display numerical values by first converting them into

string and then using the drawstring() method of Graphics class. We can do this easily by

calling the valueOf() method of String class.

Step 1: Type and save the program (.java file)

import java.awt.*;

import java.applet.*;

public class Num extends Applet

{

public void paint(Graphics g)

{

int a=10;

int b=20;

int sum=a+b;

String s="SUM="+

String.valueOf(sum);

g.drawString(s,100,100);

}

}

Step 2: Compile the applet (.class file)

Step 3: Write a html document (.html file)

 Num.html file

<HTML>

<HEAD>

 <TITLE> SUM OF TWO NUMBERS </TITLE>

</HEAD>

<BODY>

 <APPLET CODE=Num.class WIDTH=300 HEIGHT=300> </APPLET>

Sri GCSR College:Rajam Page 124

</BODY>

</HTML>

Step 4: Use the appletviewer to display the results

Example: Java program for arithmetic calculations using applets

import javax.swing.*;

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

/*<applet code="Appletcaliculator.class" width=300 height=200></applet>*/

public class Appletcaliculator extends Applet implements ActionListener

{

Label l1,l2,l3;

TextField t1,t2,t3;

Button b1,b2,b3,b4;

public void init()

{

l1=new Label("enter the first value: ");

l2=new Label("enter the second value: ");

l3=new Label("result: ");

t1=new TextField(15);

t2=new TextField(15);

t3=new TextField(15);

b1=new Button("Add");

b2=new Button("Sub");

b3=new Button("Mul");

b4=new Button("Div");

add(l1);

add(t1);

add(l2);

add(t2);

add(l3);

add(t3);

add(b1);

add(b2);

Sri GCSR College:Rajam Page 125

add(b3);

add(b4);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{

String s1=t1.getText();

String s2=t2.getText();

int x=Integer.parseInt(s1);

int y=Integer.parseInt(s2);

if(e.getSource()==b1)

{

int z=x+y;

t3.setText(String.valueOf(z));

}

if(e.getSource()==b2)

{

int z=x-y;

t3.setText(String.valueOf(z));

}

if(e.getSource()==b3)

{

int z=x*y;

t3.setText(String.valueOf(z));

}

if(e.getSource()==b4)

{

int z=x/y;

t3.setText(String.valueOf(z));

}

} }

Sri GCSR College:Rajam Page 126

Java Database Connectivity

Q:Explain Database Servers?

A database server runs a database management system and provides database services to

clients. The server manages data access and retrieval and completes clients’ requests. A database

server is a server which uses a database application that provides database services to other

computer programs or to computers, as defined by the client–server model.

Database Management System (DBMSs) frequently provide database-server

functionality, and some database management systems (such as MySQL) rely exclusively on the

client–server model for database access. Users access a database server either through a "front

end" running on the user's computer – which displays requested data – or through the "back end",

which runs on the server and handles tasks such as data analysis and storage.

Ex:

 Oracle RDBMS

 IBM DB2

 Microsoft SQL Server

 MySQL

 FileMaker

 Microsoft Access

 PostgreSQL

 DB2

 phpMyAdmin

 SQL Developer

Q: Write a short note on Database Clients

 A client system is that who sends the request to the server system and the server system

has to response the request as result. A client system is managed by users whereas the server

system is managed by a computer expert. No need of a computer expert in client system. The

client system is a system on which the results are prepared and displayed whereas the server

system is a system in which the information is prepared for the client.

Q: Explain about JDBC.

JDBC:

JDBC (Java Database Connectivity) is the Java API that manages connecting to a database,

issuing queries and commands, and handling result sets obtained from the database. Released as

part of JDK 1.1 in 1997, JDBC was one of the earliest libraries developed for the Java language.

JDBC acts as a bridge from your code to the database, as shown in Figure 1.

Sri GCSR College:Rajam Page 127

JDBC’s architecture

The JDBC interface consists of two layers:

1. The JDBC API supports communication between the Java application and the JDBC

manager.

2. The JDBC driver supports communication between the JDBC manager and the database

driver.

JDBC drivers

As an application programmer, you don’t need to immediately be concerned with the

implementation of the driver you use, so long as it is secure and official. However, it is useful to

be aware that there are four JDBC driver types:

1. JDBC-ODBC bridge driver: A thin Java layer that uses an ODBC driver under the

hood.

2. Native API driver: Provides an interface from Java to the native database client.

3. Middleware driver: A universal interface (“middleware”) between Java and the

RDBMS’s vendor-specific protocol.

4. Pure Java driver: A driver that implements the vendor-specific protocol directly in Java.

Q: What are different Stages in a JDBC Program? Explain

The fundamental steps involved in the process of connecting to a database and executing a query

consist of the following:

Sri GCSR College:Rajam Page 128

1. Import the Packages

2. Load the drivers using the forName() method

3. Register the drivers using DriverManager

4. Establish a connection using the Connection

class object

5. Create a statement

6. Execute the query

7. Close the connections

Step 1: Import the Packages

Step 2: Loading the drivers

In order to begin with, you first need to load the driver

or register it before using it in the program. Registration is to be done once in your program.

You can register a driver in one of two ways mentioned below as follows:

2-A Class.forName()

Here we load the driver’s class file into memory at the runtime. No need of using new or create

objects. The following example uses Class.forName() to load the Oracle driver as shown below

as follows:

Class.forName(“oracle.jdbc.driver.OracleDriver”);

2-B DriverManager.registerDriver()

DriverManager is a Java inbuilt class with a static member register. Here we call the

constructor of the driver class at compile time. The following example uses

DriverManager.registerDriver()to register the Oracle driver as shown below:

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver())

 Step 3: Establish a connection using the Connection class object

After loading the driver, establish connections as shown below as follows:

Connection con = DriverManager.getConnection(url,user,password)

 user: Username from which your SQL command prompt can be accessed.

 password: password from which the SQL command prompt can be accessed.

 con: It is a reference to the Connection interface.

 Url: Uniform Resource Locator which is created as shown below:

String url = “ jdbc:oracle:thin:@localhost:1521:xe”

Where oracle is the database used, thin is the driver used, @localhost is the IP Address where a

database is stored, 1521 is the port number and xe is the service provider. All 3 parameters

above are of String type and are to be declared by the programmer before calling the function.

Use of this can be referred to from the final code.

Step 4: Create a statement

Sri GCSR College:Rajam Page 129

Once a connection is established you can interact with the database. The JDBCStatement,

CallableStatement, and PreparedStatement interfaces define the methods that enable you to

send SQL commands and receive data from your database.

Use of JDBC Statement is as follows:

Statement st = con.createStatement();

Note: Here, con is a reference to Connection interface used in previous step .

Step 5: Execute the query

Now comes the most important part i.e executing the query. The query here is an SQL Query.

Now we know we can have multiple types of queries. Some of them are as follows:

 The query for updating/inserting a table in a database.

 The query for retrieving data.

The executeQuery() method of the Statement interface is used to execute queries of retrieving

values from the database. This method returns the object of ResultSet that can be used to get

all the records of a table.

The executeUpdate(sql query) method of the Statement interface is used to execute queries of

updating/inserting.

Step 6: Closing the connections

So finally, we have sent the data to the specified location and now we are on the verge of

completing our task. By closing the connection, objects of Statement and ResultSet will be

closed automatically. The close() method of the Connection interface is used to close the

connection. It is shown below as follows:

 con.close();

Q: Explain briefly Retrieving Data from MySQL Database.

import java.io.*;

import java.sql.*;

 class GFG {

 public static void main(String[] args) throws Exception

 {

 String url = "jdbc:mysql://localhost:3306/studinfo"; // table details

 String username = "sgcsrc";

 String password = "12345";

 String query = "select *from students";

 Class.forName("com.mysql.cj.jdbc.Driver");

 Connection con = DriverManager.getConnection(url, username, password);

 System.out.println("Connection Established successfully");

Sri GCSR College:Rajam Page 130

 Statement st = con.createStatement();

 ResultSet rs = st.executeQuery(query);

 rs.next();

 String name = rs.getString("name");

 System.out.println(name);

 st.close();

 con.close();

 System.out.println("Connection Closed....");

 }

}

Output:

name of the student is retrieved from database

Q: Explain briefly Retrieving Data from Oracle Database.

To connect java application with the oracle database, we need to follow 5 following steps. In this

example, we are using Oracle 10g as the database. So we need to know following information for

the oracle database:

1. Driver class: The driver class for the oracle database is oracle.jdbc.driver.OracleDriver.

2. Connection URL: The connection URL for the oracle10G database

is jdbc:oracle:thin:@localhost:1521:xe where jdbc is the API, oracle is the database, thin

is the driver, localhost is the server name on which oracle is running, we may also use IP

address, 1521 is the port number and XE is the Oracle service name

3. Username: The default username for the oracle database is system.

4. Password: It is the password given by the user at the time of installing the oracle

database.

import java.sql.*;

class OracleCon

{

public static void main(String args[])

{

 try

 {

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Connection con;

Sri GCSR College:Rajam Page 131

 con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","system","

oracle");

 Statement stmt=con.createStatement();

 ResultSet rs=stmt.executeQuery("select * from emp");

 while(rs.next())

 System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

 con.close();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

}

}

Q: Explain briefly Retrieving Data from MS Access Database.

Different step for creating DSN (datasource name)

and adding it to our database.

 Go to the Control Panel and select the

Administrative Tool

 Select and open the Data Sources

(ODBC)

 A window, ODBC Administrator, will

open then select the System DSN menu

and click Add button

 A new window, Create a new Data

Source will open then select the

Microsoft Access Driver, as shown

below

Sri GCSR College:Rajam Page 132

 After this a new window ODBC

Microsoft Access Setup will open then

write the DSN and select the Select

button

 A new window Select Database will open

select your database and click on OK

button

Now we are ready to create any table and insert the values in that table.

Now write the code for retrieving data from the above database

import java.sql.*;

class AccessDB

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con=DriverManager.getConnection("jdbc:odbc:","","");

 Statement st=con.createStatement();

 ResultSet rs=st.executeQuery("select * from studinfo");

Sri GCSR College:Rajam Page 133

 while(rs.next())

 {

 System.out.print("Admin Number = "+rs.getString(1));

 System.out.print("\nName of the Student = "+rs.getString(2));

 System.out.print("\nCourse name ="+rs.getString(3)+"\n\n");

 }

 }

 catch(Exception e){System.out.print(e);}

 }

}

Q: What is DSN?

Data Source Name is a name given to the database to identify it in the Java program. The DSN

is linked with the actual location of the database.

Q: What is stored Procedure?

A stored procedure represents a set of statements that is stored and executed at database server

sending the results to the client.

Q: What is the use of the callable statement?

Callable statement is useful to call stored procedure and functions which run at a database

server and get the results into the client.

Q: Explain different types of ResultSet Types

 In default, we can iterate the data/values in ResultSet which have returned as an output of

the executed SQL statement in the forward direction. We can iterate the values in other

directions using Scrollable ResultSet. We can specify the type and concurrency of ResultSet

while creating Statement, PreparedStatement, and CallableStatement objects.

There are 3 types in ResultSet. They are:
1. TYPE_FORWARD_ONLY: It is the default option, where the cursor moves

from start to end i.e. in the forward direction.

2. TYPE_SCROLL_INSENSITIVE: In this type, it will make the cursor to move

in both forward and backward directions. If we make any changes in the data

while iterating the stored data it won’t update in the dataset if anyone changes the

Sri GCSR College:Rajam Page 134

data in DB. Because the dataset has the data from the time the SQL query returns

the Data.

3. TYPE_SCROLL_SENSITIVE: It is similar to TYPE_SCROLL_INSENSITIVE,

the difference is if anyone updates the data after the SQL Query has returned the data,

while iterating it will reflect the changes to the dataset.

	Software Code Compilation & Execution process
	i. Simple:
	ii. Object-oriented:
	v. Secured:
	8. Explain Naming Conventions in Java

	10. Explain different data types supported by JAVA:
	Arithmetic Operators:-
	Bitwise Operators
	Increment and Decrement Operators:
	Assignment Operator:
	Conditional Operator:
	Special Operators:
	Java brings various Streams with its I/O package that helps the user to perform all the input-output operations. These streams support all the types of objects, data-types, characters, files etc to fully execute the I/O operations.
	A String in Java is actually an object, which contain methods that can perform certain operations on strings.
	21. Explain the Applications of Object Oriented Programming Languages.
	A. Client-Server Systems
	B. Object Oriented Databases:
	C. Real-Time System Design:
	D. Simulation and Modeling System:
	E. Hypertext and Hypermedia:
	F. Neural Networking and Parallel Programming:
	G. Office Automation Systems:
	H. CIM/CAD/CAM Systems:
	I. AI Expert Systems:

	D. Encapsulation
	E. Polymorphism
	F. Inheritance
	Inheritance is a mechanism in which one class acquires the property of another class. It’s creating a parent-child relationship between two classes. With inheritance, we can reuse the fields and methods of the existing class. Hence, inheritance facili...
	 In Java, when an "Is-A" relationship exists between two classes we use Inheritance
	 The parent class is termed super class and the inherited class is the sub class
	 The keyword "extend" is used by the sub class to inherit the features of super class
	Inheritance is important since it leads to reusability of code
	24. What is Object? How to create objects in JAVA.
	Types of Java constructors

	33. Explain Method Overloading in Java.
	38. Explain about Type Casting in Java.
	Type casting
	Types of Type Casting

	39. Explain about Object class in Java
	Methods of Object class

	40. What is Abstraction? Explain the Abstract Keyword In Java.
	What is Single Thread?
	Multithreading:-
	The main purpose of multithreading is to provide simultaneous execution of two or more parts of a program to maximum utilize the CPU time. A multithreaded program contains two or more parts that can run concurrently.
	Hence it is also known as Concurrency in Java. Each such part of a program called thread. This multitasking is done, when multiple processes share common resources like CPU, memory, etc.

	JDBC’s architecture
	JDBC drivers
	Q: Explain different types of ResultSet Types

